Display:

Results

Viewing 121 to 150 of 16671
2016-04-05
Technical Paper
2016-01-0163
Thomas Rothermel, Jürgen Pitz, Hans-Christian Reuss
Abstract This paper proposes a framework for semi-autonomous longitudinal guidance for electric vehicles. To lower the risk for pedestrian collisions in urban areas, a velocity trajectory which is given by the driver is optimized with respect to safety aspects with the help of Nonlinear Model Predictive Control (NMPC). Safety aspects, such as speed limits and pedestrians on the roadway, are considered as velocity and spatial constraints within prediction horizon in NMPC formulation. A slack variable is introduced to enable overshooting of velocity constraints in situations with low risk potential to rise driver acceptance. By changing the weight of slack variable, the control authority can be shifted continuously from driver to automation. Within this work, a prototypical real-time implementation of the longitudinal guidance system is presented and the potential of the approach is demonstrated in human-in-the-loop test drives in the Stuttgart Driving Simulator.
2016-04-05
Technical Paper
2016-01-0150
Felix Pistorius, Andreas Lauber, Johannes Pfau, Alexander Klimm, Juergen Becker
Abstract Various algorithms such as emergency brake or crash warning using V2X communication have been published recently. For such systems hard real-time constraints have to be satisfied. Therefore latency needs to be minimized to keep the message processing delay below a certain threshold. Existing V2X systems based on the IEEE 1609 and SAE J2735 standards implement most message processing in software. This means the latency of these systems strongly depends on the CPU load as well as the number of incoming messages per time. According to safety constraints all messages of nearby vehicles have to be processed, whereby no prediction of the message importance can be given without analyzing the message content. Regarding the aforementioned requirements we propose a novel architecture that optimizes latency to satisfy the hard real-time constraints for V2X messages.
2016-04-05
Technical Paper
2016-01-0170
Vidya Nariyambut Murali, Ashley Micks, Madeline J. Goh, Dongran Liu
Abstract Camera data generated in a 3D virtual environment has been used to train object detection and identification algorithms. 40 common US road traffic signs were used as the objects of interest during the investigation of these methods. Traffic signs were placed randomly alongside the road in front of a camera in a virtual driving environment, after the camera itself was randomly placed along the road at an appropriate height for a camera located on a vehicle’s rear view mirror. In order to best represent the real world, effects such as shadows, occlusions, washout/fade, skew, rotations, reflections, fog, rain, snow and varied illumination were randomly included in the generated data. Images were generated at a rate of approximately one thousand per minute, and the image data was automatically annotated with the true location of each sign within each image, to facilitate supervised learning as well as testing of the trained algorithms.
2016-04-05
Technical Paper
2016-01-1492
Ming Shen, Haojie Mao, Binhui Jiang, Feng Zhu, Xin Jin, Liqiang Dong, Suk Jae Ham, Palani Palaniappan, Clifford Chou, King Yang
Abstract To help predict the injury responses of child pedestrians and occupants in traffic incidents, finite element (FE) modeling has become a common research tool. Until now, there was no whole-body FE model for 10-year-old (10 YO) children. This paper introduces the development of two 10 YO whole-body pediatric FE models (named CHARM-10) with a standing posture to represent a pedestrian and a seated posture to represent an occupant with sufficient anatomic details. The geometric data was obtained from medical images and the key dimensions were compared to literature data. Component-level sub-models were built and validated against experimental results of post mortem human subjects (PMHS). Most of these studies have been mostly published previously and briefly summarized in this paper. For the current study, focus was put on the late stage model development.
2016-04-05
Technical Paper
2016-01-1491
Eunjoo Hwang, Jason Hallman, Katelyn Klein, Jonathan Rupp, Matthew Reed, Jingwen Hu
Abstract Current finite element (FE) human body models (HBMs) generally only represent young and mid-size male occupants and do not account for body shape and composition variations among the population. Because it generally takes several years to build a whole-body HBM, a method to rapidly develop HBMs with a wide range of human attributes (size, age, obesity level, etc.) is critically needed. Therefore, the objective of this study was to evaluate the feasibility of using a mesh morphing method to rapidly generate skeleton and whole-body HBMs based on statistical geometry targets developed previously. THUMS V4.01 mid-size male model jointly developed by Toyota Motor Corporation and Toyota Central R&D Labs was used in this study as the baseline HBM to be morphed. Radial basis function (RBF) was used to morph the baseline model into the target geometries.
2016-04-05
Technical Paper
2016-01-1485
Noritoshi Atsumi, Yuko Nakahira, Masami Iwamoto, Satoko Hirabayashi, Eiichi Tanaka
Abstract A reduction in brain disorders owing to traumatic brain injury (TBI) caused by head impacts in traffic accidents is needed. However, the details of the injury mechanism still remain unclear. In past analyses, brain parenchyma of a head finite element (FE) model has generally been modeled using simple isotropic viscoelastic materials. For further understanding of TBI mechanism, in this study we developed a new constitutive model that describes most of the mechanical properties in brain parenchyma such as anisotropy, strain rate dependency, and the characteristic features of the unloading process. Validation of the model was performed against several material test data from the literature with a simple one-element model. The model was also introduced into the human head FE model of THUMS v4.02 and validated against post-mortem human subject (PMHS) test data about brain displacements and intracranial pressures during head impacts.
2016-04-05
Technical Paper
2016-01-1483
Ross Hunter, Ryan Fix, Felix Lee, David King
Abstract The objective of this study was to assess the accuracy of using high-speed frontal barrier crash tests to predict the impact speed, i.e. equivalent barrier speed (EBS), of a lower-speed frontal barrier crash. Force-displacement (F-D) curves were produced by synchronizing the load cell barrier (LCB) data with the accelerometer data. Our analysis revealed that the F-D curves, including the rebound phase, for the same vehicle model at the same impact speed were generally similar. The test vehicle crush at the time of barrier separation, determined from the F-D curves, was on average 17±16% (N = 150) greater than the reported maximum hand-measured residual crush to the bumper cover. The EBS calculated from the F-D curves was on average 4±4% (N=158) greater than the reported EBS, indicating that using F-D curves derived from LCB data is a reliable method for calculating vehicle approach energy in a crash test.
2016-04-05
Technical Paper
2016-01-1481
Gary A. Davis, Abhisek Mudgal
Abstract A continuing topic of interest is how to best use information from Event Data Recorders (EDR) to reconstruct crashes. If one has a model which can predict EDR data from values of the target variables of interest, such as vehicle speeds at impact, then in principle one can invert this model to estimate the target values from EDR measurements. In practice though this can require solving a system of nonlinear equations and a reasonably flexible method for carrying this out involves replacing the inverse problem with nonlinear least-squares (NLS) minimization. NLS has been successfully applied to two-vehicle planar impact crashes in order to estimate impact speeds from different combinations of EDR, crush, and exit angle measurements, but an open question is how to assess the uncertainty associated with these estimates. This paper describes how Markov Chain Monte Carlo (MCMC) simulation can be used to quantify uncertainty in planar impact crashes.
2016-04-05
Technical Paper
2016-01-1480
Jakub Zebala, Wojciech Wach, Piotr Ciępka, Robert Janczur
Abstract This article presents the results of an analysis of the yaw marks left by a car with normal pressure in all tires and then normal pressure in three tires and zero in one rear tire. The analysis is a continuation of research on influence of reduced tire pressure on car lateral dynamics in a passing maneuver, discussed in the SAE paper No. 2014-01-0466. Preliminary analysis of yaw marks has shown, that a wheel with zero pressure deposits a yaw mark whose geometry differs from the yaw mark made by a wheel with normal pressure based on which we could calculate: critical speed, slip angle and longitudinal wheel slip. The aim of the presented research was to analyze the yaw marks left by car with zero pressure in one rear wheel in order to check the possibility of determining the vehicle critical speed, slip angle and longitudinal wheel slip. It was reached by performing bench and road tests during which the vehicle motion parameters were recorded using GPS Data Logging System.
2016-04-05
Technical Paper
2016-01-1478
William T. Neale, David Hessel, Daniel Koch
Abstract This paper presents a methodology for determining the position and speed of objects such as vehicles, pedestrians, or cyclists that are visible in video footage captured with only one camera. Objects are tracked in the video footage based on the change in pixels that represent the object moving. Commercially available programs such as PFTracktm and Adobe After Effectstm contain automated pixel tracking features that record the position of the pixel, over time, two dimensionally using the video’s resolution as a Cartesian coordinate system. The coordinate data of the pixel over time can then be transformed to three dimensional data by ray tracing the pixel coordinates onto three dimensional geometry of the same scene that is visible in the video footage background.
2016-04-05
Technical Paper
2016-01-1472
Dietmar Otte, Martin Urban, Heiko Johannsen
Abstract Estimating the potential benefit of advanced safety systems by simulation has become increasingly important during the last years. All over the world OEMs and suppliers carry out benefit estimations by simulations via computer models. Such simulations should, of course, be based on real world scenario such as the pre-crash phase of real world accidents. Several methodologies for building up accident scenarios have been developed in the past. This paper shows a new method for generating pre-crash scenarios directly from the reconstruction of the accident by using the software PC-Crash1. The new method was developed by the Medical University Hannover (MHH) and the Fraunhofer Institute for Transportation Dresden (Fraunhofer IVI). It is based on transferring all information (participant-, vehicle-, environment- and motion-data) from the reconstruction file into a scenario-database.
2016-04-05
Technical Paper
2016-01-1471
Anthony Timpanaro, Charles Moody, Wesley Richardson, Bradley Reckamp, Orion Keifer
Abstract It is well known that older vehicles’ headlight assemblies degrade with exposure to the elements and can become cloudy or crazed. It is also known that the degradation decreases the amount of useful light projected forward, which can drastically reduce night time or down-road visibility. Testing has been performed to measure the available light projected by old degraded headlamp assemblies and new replacement assemblies, to quantify the decrease in emitted light caused by the degradation. The work has been extended to quantify the improvement in available light when the degraded lenses are treated with commercially available restoration products. Five different vehicle headlamp assemblies representing four different manufacturers were tested measuring the illumination at a given distance with a modified Extech® illuminance meter.
2016-04-05
Technical Paper
2016-01-1469
Craig Luker
High image quality video surveillance systems have proliferated making it more common to have collision-related video footage that is suitable for detailed analysis. This analysis begins by using variety of methods to reconstruct a series of positions for the vehicle. If the frame rate is known or can be estimated, then the average travel speed between each of those vehicle positions can be found. Unfortunately with video surveillance systems, the frame rates are typically low and the vehicle may be hidden from view for multiple frames. As a result there are often relatively large time steps between known vehicle positions and the average speed between known positions becomes less useful. The method outlined here determines the instantaneous speed and acceleration time history of the vehicle that was required for it to arrive at the known positions, at the known times.
2016-04-05
Technical Paper
2016-01-1467
Neal Carter, Alireza Hashemian, Nathan A. Rose, William T.C. Neale
Abstract Improvements in computer image processing and identification capability have led to programs that can rapidly perform calculations and model the three-dimensional spatial characteristics of objects simply from photographs or video frames. This process, known as structure-from-motion or image based scanning, is a photogrammetric technique that analyzes features of photographs or video frames from multiple angles to create dense surface models or point clouds. Concurrently, unmanned aircraft systems have gained widespread popularity due to their reliability, low-cost, and relative ease of use. These aircraft systems allow for the capture of video or still photographic footage of subjects from unique perspectives. This paper explores the efficacy of using a point cloud created from unmanned aerial vehicle video footage with traditional single-image photogrammetry methods to recreate physical evidence at a crash scene.
2016-04-05
Technical Paper
2016-01-1466
Bradley C. Reckamp, Charles Moody, Anthony Timpanaro, Orion Keifer
Abstract A common low speed motor vehicle collision scenario occurs in heavy traffic situations between two or more vehicles which were stopped in traffic prior to the collision. While information regarding the pre-collision spacing of the involved vehicles can be very useful to an accident reconstructionist, witness perceptions and statements regarding the distance between the stopped vehicles, prior to the collision, can be inaccurate. Physical evidence regarding precollision spacing is also unavailable in most cases. A study was conducted of several selected intersections in three major metropolitan areas in the United States of America. Publicly available aerial photography, rectified and scaled, was used to perform a statistical analysis of the distance between stopped passenger vehicles at busy traffic signalized intersections.
2016-04-05
Technical Paper
2016-01-1465
John Zolock, Carmine Senatore, Ryan Yee, Robert Larson, Brian Curry
Abstract As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects.
2016-04-05
Technical Paper
2016-01-1458
Ryuta Ono, Wataru Ike, Yuki Fukaya
Abstract Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
2016-04-05
Technical Paper
2016-01-1461
William T. Neale, David Danaher, Sean McDonough, Tomas Owens
Abstract There are numerous publically available smart phone applications designed to track the speed and position of the user. By accessing the phones built in GPS receivers, these applications record the position over time of the phone and report the record on the phone itself, and typically on the application’s website. These applications range in cost from free to a few dollars, with some, that advertise greater functionality, costing significantly higher. This paper examines the reliability of the data reported through these applications, and the potential for these applications to be useful in certain conditions where monitoring and recording vehicle or pedestrian movement is needed. To analyze the reliability of the applications, three of the more popular and widely used tracking programs were downloaded to three different smart phones to represent a good spectrum of operating platforms.
2016-04-05
Technical Paper
2016-01-1518
Carolyn W. Roberts, Jacek Toczyski, Jack Cochran, Qi Zhang, Patrick Foltz, Bronislaw Gepner, Jason Kerrigan, Mark Clauser
Abstract Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
2016-04-05
Technical Paper
2016-01-1517
Cole R. Young, David J. King, James V. Bertoch
Abstract The purpose of this study was to characterize the kinematics of four Chevrolet Tracker rollover tests and to determine their average and intermediate deceleration rates while traveling on concrete and dirt. Single vehicle rollover tests were performed using four 2001 Chevrolet Trackers fitted with six degree of freedom kinematic sensors. Tests were conducted using a rollover test device (RTD) in accordance with SAE J2114. The test dolly was modified (resting height of the vehicle wheels was raised) between tests 1, 2, and 3. The RTD was accelerated to 15.6 m/s (35 mph) and then decelerated rapidly by an energy absorbing crash cushion (EA) to cause the vehicle to launch and roll. The vehicles initially rolled on a smooth concrete surface and continued into loose dirt. This paper adds to the body of work identifying phases of constant deceleration during staged RTD tests and compares these phases to the overall deceleration rate.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1513
Bronislaw D. Gepner, Jack Cochran, Patrick Foltz, Carolyn Roberts, Jacek Toczyski, Qi Zhang, Matthew Taracko, Jacob Borth, Robert Wilson, Adam Upah, Jason Kerrigan
Abstract Recreational Off-Highway Vehicles (ROVs), since their introduction onto the market in the late-1990s, have been related to over 300 fatalities with the majority occurring in vehicle rollover. In recent years several organizations made attempts to improve ROV safety. This paper is intended to evaluate ejection mitigation measures considered by the ROV manufacturers. Evaluated countermeasures include two types of occupant restraints (three and four point) and two structural barriers (torso bar, door with net). The Rollover protection structure (ROPS) provided by the manufacturer was attached to a Dynamic Rollover Test System (DRoTS), and a full factorial series of roll/drop/catch tests was performed. The ROV buck was equipped with two Hybrid III dummies, a 5th percentile female and a 95th percentile male. Additionally, occupant and vehicle kinematics were recorded using optoelectronic stereophotogrammetric camera system.
2016-04-05
Technical Paper
2016-01-1512
Jeya Padmanaban, Roger Burnett, Andrew Levitt
Abstract This paper updates the findings of prior research addressing the relationship between seatback strength and likelihood of serious injury/fatality to belted drivers and rear seat occupants in rear-impact crashes. Statistical analyses were performed using 1995-2014 CY police-reported crash data from seventeen states. Seatback strength for over 100 vehicle model groupings (model years 1996-2013) was included in the analysis. Seatback strength is measured in terms of the maximum moment that results in 10 inches of seat displacement. These measurements range from 5,989 in-lbs to 39,918 in-lbs, resulting in a wide range of seatback strengths. Additional analysis was done to see whether Seat Integrated Restraint Systems (SIRS) perform better than conventional belts in reducing driver and rear seat occupant injury in rear impacts. Field data shows the severe injury rate for belted drivers in rear-impact crashes is less than 1%.
2016-04-05
Technical Paper
2016-01-1516
Takahiro Suzaki, Noritaka Takagi, Kosho Kawahara, Tsuyoshi Yasuki
Abstract Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
2016-04-05
Technical Paper
2016-01-1514
Varun Bollapragada, Taewung Kim, Mark Clauser, Jeff Crandall, Jason Kerrigan
Abstract Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
2016-04-05
Technical Paper
2016-01-1508
Gernot Pauer, Michal Kriska, Andreas Hirzer
Abstract Active bonnet safety systems are implemented into vehicles, to fulfill pedestrian head impact requirements despite little available deformation space. For such systems it is necessary to consider a variety of aspects already from the very beginning of the vehicle design process and the functionality of the whole system needs to be continually cross-checked throughout the whole design process. Many of these aspects are already supported by finite element (FE) methods from vehicle manufacturers and in this paper it is shown, how the last missing links within the development process, the optimization of pedestrian detection sensor signals can also be efficiently supported by FE simulation. The modeling and validation of a pressure tube based sensor system and so called “misuse objects” are demonstrated.
2016-04-05
Technical Paper
2016-01-1510
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Pratapnaidu Vallabhaneni, Munenori Shinada, Kazuto Sato
Abstract Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
2016-04-05
Technical Paper
2016-01-1511
Jan Vychytil, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this work we present the VIRTHUMAN model as a tool for injury risk assessment in pedestrian crash scenarios. It is a virtual human body model formed of a multibody structure and deformable segments to account for the mechanical response of soft tissues. Extensive validation has been performed to ensure its biofidelity. Due to the scaling algorithm implemented, variations in the human population in terms of height, weight, gender and age can be considered. Assessment of the injury risk is done via automatic evaluation software developed. Injury criteria for individual body parts are evaluated using accelerations, forces and displacements of certain points. Injury risk is indicated by the colour of particular body parts in accordance with NCAP rating. A real accident is investigated in this work. A 60-year-old female was hit laterally by a passenger vehicle with the impact velocity of 40 km/h. The accident is reconstructed using VIRTHUMAN as pedestrian representative.
2016-04-05
Technical Paper
2016-01-1504
Monica Lynn Haumann Jones, Sheila Ebert-Hamilton, Matthew Reed
Abstract Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
2016-04-05
Technical Paper
2016-01-1506
David Poulard, Huipeng Chen, Matthew Panzer
Abstract Pedestrian finite element models (PFEM) are used to investigate and predict the injury outcomes from vehicle-pedestrian impact. As postmortem human surrogates (PMHS) differ in anthropometry across subjects, it is believed that the biofidelity of PFEM cannot be properly evaluated by comparing a generic anthropometry model against the specific PMHS test data. Global geometric personalization can scale the PFEM geometry to match the height and weight of a specific PMHS, while local geometric personalization via morphing can modify the PFEM geometry to match specific PMHS anatomy. The goal of the current study was to evaluate the benefit of morphed PFEM compared to globally-scaled and generic PFEM by comparing the kinematics against PMHS test results. The AM50 THUMS PFEM (v4.01) was used as a baseline for anthropometry, and personalized PFEM were created to the anthropometric specifications of two obese PMHS used in a previous pedestrian impact study using a mid-size sedan.
Viewing 121 to 150 of 16671

Filter