Display:

Results

Viewing 91 to 120 of 16177
2015-05-04
WIP Standard
ARP5384
This Recommended Practice provides a guide for specifying general design, performance, and test requirements for Power Drive Units (PDUs) for aerospace flight controls or other aerospace applications.
2015-04-30
WIP Standard
J3098
This SAE Recommended Practice applies to illuminated devices installed on the front exterior of motor vehicles that are intended only to be decorative in nature. This Recommended Practice provides guidelines for the installation, activation, performance, and test procedures of decorative illuminated devices installed on the front exterior of motor vehicles.
2015-04-29
WIP Standard
J1133
This document provides design guidelines, test procedure references, and performance requirements for stop arm lamp devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
2015-04-28
Standard
AS567K
This SAE Aerospace Standard (AS) covers devices whose primary function is the retention of fasteners, except for such devices that are integral with the item being retained.
2015-04-24
WIP Standard
J2744
This document presents the requirements for a build-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emission Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuate them out of, the system. This access may be used for the following evaluations: Evaporative System Certifications Canister Loading and Pumping End-of-line Testing System Integrity Service (e.g. OBD MIL on) Leak Location and Repair Verification In-Use Compliance Testing Canister Loading and Purging Inspection/Maintenance Testing System Integrity and Purge Check
2015-04-24
WIP Standard
J211/1
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
2015-04-21
Article
Although 30% of traffic fatalities are alcohol-related, and electronic Driver Alcohol Detection System for Safety has appeal, more targeted approaches to reducing them are being taken by car makers. Programs aimed at reducing teen driver accidents and death were described at the 25th annual World Traffic Safety Symposium during the New York Auto Show.
2015-04-21
WIP Standard
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
2015-04-16
Book
Robert J. Flemming
The effects of inflight atmospheric icing can be devastating to aircraft. Universities and industry have been hard at work to respond to the challenge of maintaining flight safety in all weather conditions. Proposed changes in the regulations for operation in icing conditions are sure to keep this type of research and development at its highest level. This is especially true for the effects of ice crystals in the atmosphere, and for the threat associated with supercooled large drop (SLD) icing. This collection of ten SAE International technical papers brings together vital contributions to the subject. Icing on aircraft surfaces would not be a problem if a material were discovered that prevented the freezing and accretion of supercooled drops. Many options that appeared to have promising icephobic properties have had serious shortfalls in durability.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode “Sensors: Advanced Safety” (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
2015-04-14
Collection
This technical paper collectopm places an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs.
2015-04-14
Collection
Active Safety and Driver assistance systems are gaining importance as many passive safety systems have already been found to have yielded significant safety benefits that are possible from the deployment of those systems in the fleet. Similar success will much depend upon how fast these systems proliferate the entire passenger vehicle fleet. It will also depend on the deployment strategies used by the industry and the government as well as consumer acceptance and market demand for these systems. Additionally, opportunities exist to use the information gained from the various onboard sensors and vision systems in active safety systems for improving the effectiveness of today’s passive safety systems such as seat belts, airbags, and post-crash safety systems even further by the integration of active and passive safety systems.
2015-04-14
Collection
The Occupant Restraints technical paper collection highlights papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-14
WIP Standard
J2938
This SAE Recommended Practice provides test procedures, requirements, and guidelines for the methods of the measurement of lumen maintenance of LED devices (packages, arrays and modules). This document does not provide guidance or make any recommendation regarding predictive estimations or extrapolation for lumen maintenance beyond the limits of the lumen maintenance determined from actual measurements.
2015-04-14
Technical Paper
2015-01-1330
Yoshiyuki Tosa, Hiroyuki Mae
Abstract The objective of this study is to accurately predict the dynamic strain on the windshield caused by the deployment of the airbag in a short term without vehicle tests. The following assumption is made as to the dynamic pressure distribution on the windshield: The deployment of the airbag is fast enough to ignore spatial difference in the patterns of the pressure time histories. Given this assumption, significant parameters of the dynamic pressure distribution are as follows: 1) the distribution of the maximum pressure during contact between the airbag and the windshield, and 2) the characteristic of the force time histories applied to the windshield by the deploying airbag. In this study, the prediction method consists of a simplified airbag deployment test and an FE simulation. The simple deployment test was conducted to measure the peak pressure distribution between the airbag and a flat panel simulating the windshield.
2015-04-14
Technical Paper
2015-01-1364
Tao Wang, LIangmo Wang, Yuanlong Wang, Xiaojun Zou, Fuxiang Guo
Abstract The design of aluminum foam reinforced thin-walled tubes has garnered much interest recently due to the high energy absorption capacity of these tubes. As a new kind of engineering composite material, aluminum foam can hugely increase the crashworthiness capacity without sacrificing too much weight. In this paper, axisymmetric thin-walled hollow tubes with four different kinds of cross-sections (circular, square, hexagonal and octagonal) are studied to assess their performance for crashworthiness problems. It is found that the tube with square cross-section has the best crashworthiness performance under axial impact. To seek optimal designs of square aluminum foam reinforced thin-walled tubes, a surrogate modeling technique coupled with a multi-criteria particle swarm optimization algorithm has been developed, to maximize specific energy absorption (SEA) and minimize peak crash force (PCF).
2015-04-14
Technical Paper
2015-01-1362
Chao Li, Il Yong Kim
Abstract A bumper system plays a significant role in absorbing impact energy and buffering the impact force. Important performance measures of an automotive bumper system include the maximum intrusions, the maximum absorbed energy, and the peak impact force. Finite element analysis (FEA) of crashworthiness involve geometry-nonlinearity, material-nonlinearity, and contact-nonlinearity. The computational cost would be prohibitively expensive if structural optimization directly perform on these highly nonlinear FE models. Solving crashworthiness optimization problems based on a surrogate model would be a cost-effective way. This paper presents a design optimization of an automotive rear bumper system based on the test scenarios from the Research Council for Automobile Repairs (RCAR) of Europe. Three different mainstream surrogate models, Response Surface Method (RSM), Kriging method, and Artificial Neural Network (ANN) method were compared.
2015-04-14
Technical Paper
2015-01-0499
Nagarjun Jawahar, Sangamitra Manoharan, Harish Chandran
Abstract Material energy and cost minimization has been the need of the hour off late. The work aims at designing a micro gripping device which has suitable application in bio medical industry; specifically surgical operation of comminuted fracture using CAE software. Being a combination of an inverter and a clip, the ability of the compliant mechanism to be used as a gripper as well as positioner constitutes its rare versatility. The compliant mechanisms are single-piece structures, having no backlash as in case of rigid-body, jointed mechanisms and comparatively cheaper to manufacture. Designed in MATLAB R2008a using the concept of topological optimization, modeled in AutoCAD Mechanical 2011 and analyzed in ANSYS Workbench 13.0; the mechanism is initially designed with a geometrical advantage of 2. The MATLAB code which is an improvement of the 99 line code written by O.
2015-04-14
Technical Paper
2015-01-0575
SongAn Zhang, Qing Zhou, Yong Xia
Abstract Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading.
2015-04-14
Technical Paper
2015-01-0571
Andreas Teibinger, Christian Mayer, Ernö Dux, Gian Antonio D’Addetta, Peter Luttenberger, Jac Wismans, Rémy Willinger
Abstract In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
2015-04-14
Technical Paper
2015-01-0564
Sung Wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
Abstract In a car accident which is involving pedestrians, head injuries occur very frequently as the head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate the pedestrian injury, and car manufacturers are trying to meet the criterion by changing the design and/or materials.. However, there are some difficulties in the windshield impact test, e.g. a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful results from single test and thus, tests should be executed several times. In this study, a lab-scale windshield impact test was performed using a modified instrumented dart impact (IDI) tester. Tests were carried out by switching test conditions such as the impact speed, the size of the head form and the specimen thickness.
2015-04-14
Technical Paper
2015-01-1369
Kai Liu, Andres Tovar, Emily Nutwell, Duane Detwiler
Abstract This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
2015-04-14
Technical Paper
2015-01-1217
Changhong Liu, Lin Liu
Abstract Many problems are associated with the large battery operation current, such as battery overheating, lithium plating, and mechanical structural instability of battery materials. All these problems may cause battery safety issues in fuel cell hybrid vehicles (FCHVs), e.g., battery explosions and thermal runaway have been reported and may cause public anxiety about FCHVs. Previous researches on FCHV power management strategy have focused on minimizing fuel consumption. But more attention needs to put on the battery current constraint for analysis of battery state of charge (SOC) and battery state of health (SOH). This research targets optimizing the FCHV battery pack operation within a safe current range through power management strategy to increase the safety of the battery pack while improving battery usage via SOC control. Battery SOH is also evaluated in the study.
2015-04-14
Technical Paper
2015-01-1399
Dee Kivett, Victor Gallas Cervo, Aparna Mantha, John Smith
Abstract A common result of aging is a decline in peripheral vision. This study provides a preliminary feasibility analysis of an improved method for alerting drivers of oncoming traffic in blind-spots. Luminescence with an intuitive color-scheme is used as the primary stimulus to permeate a wider field of useful vision than that of existing technology in use today. This method was developed based on concepts of affordance-based design through its adaptation to address specific cognitive and visual acuity challenges of the elderly. The result is an improved, intuitive technique for hazard alert that shows significant improvement over existing technology for all age groups, not just the elderly.
2015-04-14
Technical Paper
2015-01-1405
Guanjun Zhang, Feng Yu, Zhigao OuYang, Huiqin Chen, Zhonghao Bai, Libo Cao
Abstract The combination of passive and active vehicle safety technologies can effectively improve vehicle safety. Most of them predict vehicle crashes using radar or video, but they can't be applied extensively currently due to the high cost. Another collision forecasting method is more economic which is based on the driver behavior and vehicle status, such as the acceleration, angular velocity of the brake pedal and so on. However, the acceleration and angular velocity of the brake pedal will change with the driver and the vehicle type. In order to study the effect of different drivers and vehicle types on the braking acceleration and angular velocity of the brake pedal, six volunteers were asked to drive five vehicles for simulating the working conditions of emergency braking, normal braking, inching braking and passing barricades under different velocities. All the tests were conducted on asphalt road, and comprehensive experimental design was used to arrange tests.
Viewing 91 to 120 of 16177

Filter