Display:

Results

Viewing 61 to 90 of 16234
2015-07-13
Article
Mark Brooks of Southwest Research Institute’s Automation and Data Systems Division discusses the latest issues and technologies related to cybersecurity for commercial vehicles.
2015-07-09
WIP Standard
AIR6341
The purpose of this AIR is to compile in one definitive source, commonly accepted calibration, acceptance criteria and procedures for simulation of Supercooled Large Droplet (SLD) conditions within icing wind tunnels. Facilities that meet the criteria for either some or all of the recognized conditions will have known SLD icing simulation capability.
2015-07-08
WIP Standard
ARP6253A
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of “shall” in this specification expresses provisions that are binding. Non-mandatory provisions use the term “should.”
2015-07-08
Standard
J1133_201507
This document provides design guidelines, test procedure references, and performance requirements for stop arm lamp devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading.
2015-07-08
Standard
J887_201507
This document provides design guidelines, test procedure references, and performance requirements for red and yellow overhead warning devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading.
2015-07-07
Article
The sealing specialist is currently developing two new materials that reportedly will help aircraft manufacturers save weight and production costs while exceeding fire resistance and fireproof requirements for the engine application.
2015-07-01
Article
The system, to be offered on nearly all Ford SUVs globally by 2020, uses real-time video from 1-megapixel wide-angle-lens cameras mounted in the vehicle’s grill and lift gate to help drivers see around corners.
2015-07-01
Article
Its programs include driver brain wave analysis, heart and respiration monitoring, safer autonomous driving, and added driver support.
2015-06-30
Standard
J2944_201506
This Recommended Practice, Operational Definitions of Driving Performance Measures and Statistics, provides functional definitions of and guidance for performance measures and statistics concerned with driving on roadways. As a consequence, measurements and statistics will be calculated and reported in a consistent manner in SAE and ISO standards, journal articles proceedings papers, technical reports, and presentations so that the procedures and results can be more readily compared. Only measures and statistics pertaining to driver/vehicle responses that affect the lateral and longitudinal positioning of a road vehicle are currently provided in this document. Measures and statistics covering other aspects of driving performance may be included in future editions. For eye glance-related measures and statistics, see SAE J2396 (Society of Automotive Engineers, 2007) and ISO 15007-1 (International Standards Organization, 2002).
2015-06-29
WIP Standard
AS6254A
This SAE Aerospace Standard (AS) covers ULDs utilized in finding submerged aircraft. Such ULDs are installed within the aircraft in a manner that they are unlikely to become separated during crash conditions. The low frequency ULD should be attached to the airframe in accordance with the manufacturer’s recommendations in order to maximize the underwater detection range.
2015-06-29
WIP Standard
J1555
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only, some operations for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.), and some for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
2015-06-25
WIP Standard
ARP6340
This ARP provides recommended practice on the considerations and methodology to demonstrate acceptable performance of the Engine components / fuel system, and APU, whilst operating throughout the flight cycle / engine duty for continuous operation with iced fuel and short duration operation with a snowshower resulting from release of accreted ice from fuel washed surfaces, where no anti-icing additives are present (e.g. Fuel System Icing Inhibitor FSII or alternative). Two scenarios must be considered when demonstrating the capability of Engine components / fuel system, and APU to operate with fuel borne ice to satisfy certification regulations applications in support of FAA Part 23 and Part 25, CFR Part 33, and corresponding EASA CS-E regulations, and equivalent Military application requirements.
2015-06-23
WIP Standard
J2889/1
This SAE Standard is derived from SAE J2805 and specifies an engineering method for measuring the sound emitted by M and N category road vehicles at standstill and low speed operating conditions.. The specifications reproduce the level of sound which is generated by the principal vehicle sound sources consistent with stationary and low speed vehicle operating conditions relevant for pedestrian safety. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustic environment which is only obtained in an extensive open space or in special designed indoor facilities replicating the conditions of an extensive open space. Such conditions usually exist during: Measurements of vehicles for regulatory certification. Measurements at the manufacturing stage. Measurements at official testing stations.
2015-06-22
WIP Standard
AS36100B
This SAE Aerospace Standard (AS) defines the minimum performance requirements and test parameters for air cargo unit load devices requiring approval of airworthiness for installation in an approved aircraft cargo compartment and restraint system that complies with the cargo restraint and occupant protection requirements of Title 14 CFR Part 25, except for the 9.0g forward ultimate inertia force of § 25.561 (b)(3)(ii).
2015-06-19
Article
SAE International has published the new book, Ice Accretion and Icing Technology by Robert J. Flemming. The collection consists of 10 SAE International technical papers, chosen by Flemming, a known expert in the field.
2015-06-18
Standard
J673_201506
This SAE Recommended Practice is intended to cover current safety glazing practice applicable to safety glazing for use in motor vehicles and motor vehicle equipment. Nominal specifications for thickness, flatness, curvature, size, and fabrication details are included principally for the guidance of body engineers and designers.
2015-06-17
Magazine
Transmission: on a mission Ian Adcock speaks with Oerlikon Graziano's head of performance, automotive, Paolo Mantelli, about the revolution ahead for transmission systems. Inside the proving factory Ian Adcock reports on a new business model designed to bridge the skills gap between engineering start-ups and the motor industry. Sensing danger, maximum response Automotive Design looks into passenger safety systems.
2015-06-16
WIP Standard
J3103
The test procedure included in this document are used to determine a benchmark SgRP for Class A vehicles where design intent information is unknown.
2015-06-16
WIP Standard
J2678
This document provides the rationale used by the Navigation Function Accessibility Subcommittee (the Subcommittee) for the development and content of a SAE J2364 Recommended Practice: Navigation and Route Guidance Function Accessibility While Driving. It provides both the reasoning for the overall recommended practice as well as each of its elements.
2015-06-15
Technical Paper
2015-01-2112
Thomas Schlegl, Michael Moser, Hubert Zangl
Abstract We present a wireless sensor system for temperature measurement and icing detection for the use on aircraft. The sensors are flexible (i.e. bendable), truly wireless, do not require scheduled maintenance, and can be attached easily to almost any point on the aircraft surface (e.g. wings, fuselage, rudder, elevator, etc.). With a sensor thickness of less than two millimeters at the current state of development, they hardly affect the aero dynamical behavior of the structure. In this paper, we report laboratory and field results for temperature measurement and icing detection.
2015-06-15
Technical Paper
2015-01-2082
Andreas Tramposch, Wolfgang Hassler, Reinhard F.A. Puffing
Abstract Certain operating modes of the Environmental Control System (ECS) of passenger aircraft are accompanied with significant ice particle accretion in a number of pivotal parts of the system. Icing conditions particularly prevail downstream of the air conditioning packs and, as a consequence, ice particle accretion takes place in the Pack Discharge Duct (PDD) and in the mixing manifold. For a better understanding of these icing processes, numerical simulations using a multiphase model based on a coupled Eulerian-Lagrangian transport model in a generic PDD were performed. The obstruction of the PDD due to ice growth and the resulting change of the flow geometry were treated by deforming the computational mesh during the CFD simulations. In addition to the numerical investigations, a generic and transparent PDD was studied experimentally under several operating conditions in FH JOANNEUM's icing wind tunnel.
2015-06-15
Technical Paper
2015-01-2081
Hossein Habibi, Graham Edwards, Liang Cheng, Haitao Zheng, Adam Marks, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan
Abstract Icing conditions in cold regions of the world may cause problems for wind turbine operations, since accreted ice can reduce the efficiency of power generation and create concerns regarding ice-shedding. This paper covers modelling studies and some experimental development for an ongoing ice protection system that provides both deicing and anti-icing actions for wind turbine blades. The modelling process contained two main sections. The first part involved simulation of vibrations with very short wavelength or ultrasonic guided waves (UGW) on the blade to determine optimal excitation frequency and transducer configuration. This excitation creates horizontal shear stress at the interface between ice and blade and focuses energy at the leading edge for de-bonding ice layers.
2015-06-15
Technical Paper
2015-01-2080
Roger J. Aubert
Abstract The entire process from ice accretion to ice impact with ice shedding in between still needs refinement. This paper presents key points illustrating the need for improvements in understanding the mechanical properties of ice accretion on helicopter rotor systems.
2015-06-15
Technical Paper
2015-01-2079
Colin Hatch, Jason Moller, Eleftherios Kalochristianakis, Ian Roberts
Abstract The introduction of ice-phobic coatings promises to allow passive ice protection systems to be developed particularly for rotating systems such as propellers. The centrifugal force field combined with reduced adhesive strength can produce a self-shed capability limiting the amount of ice build-up. The size and shed time of ice shed from a propeller is predicted using a process that determines ice shape, ice growth rate and both internal and ice-structure interface stresses. A simple failure model is used to predict the onset of local failure and to propagate damage in the ice until local ice shedding is obtained. Recommendations are made on developing the model further.
2015-06-15
Technical Paper
2015-01-2078
Alric Rothmayer, Hui Hu
Abstract A strong air/water interaction theory is used to develop a fast simplified model for the trapping of water in a film that flows over sub-grid surface roughness. The sub-grid model is used to compute correction factors that can alter mass transport within the film. The sub-grid model is integrated into a covariant film mass transport model of film flow past three-dimensional surfaces in a form that is suitable for use in aircraft icing codes. Sample calculations are presented to illustrate the application of the model.
2015-06-15
Technical Paper
2015-01-2076
Caroline Laforte, Neal Wesley, Marc Mario Tremblay
Abstract This study presents a new method to evaluate and compare the anti-icing performance, i.e., the ability to delay the reformation of ice, of runways and taxiways deicing/anti-icing fluids (RDF) under icing precipitation, based on the skid resistance values, obtained with the Portable Skid Resistance Tester (PSRT). In summary, the test consists of applying, on a standardized concrete pavement sample, a given quantity of de-icing fluid. Following this application, the concrete sample is submitted to low freezing drizzle intensities, in a cold chamber at −5.0 ± 0.3°C. The skid resistance of concrete is measured at 5 minute intervals, until the concrete becomes completely iced. The anti-icing performance of 5 different fluids, both experimental and commercial, was assessed in comparison with a reference solution of 50% w/w K-formate. The anti-icing performance is analyzed based on two parameters: the duration (Icing Protection Time, IPT) and the effectiveness of this protection.
2015-06-15
Technical Paper
2015-01-2095
Wolfgang Hassler, Reinhard F.A. Puffing, Andreas Tramposch
Abstract This paper deals with thermal ice protection of electrically heated restraining grids designed for applications in the environmental control system (ECS) of passenger aircraft. The restraining grids described in the paper consist of strung, electrically insulated wire and are - in certain operation modes of the ECS - exposed to an airstream containing supercooled water droplets and/or ice particles. Heat is generated in the wire by an electric current, and the temperature of the wire is controlled with the aid of an electronic control system. A substantial question for laying out the controller and for operating the grids is the following: What minimum heating power is required to prevent ice accretion on the surface of the wire, i.e., what is the least heating power that is necessary to keep a grid being exposed to specific icing conditions devoid of ice? This problem is studied for a simple model system first and is then examined for restraining grids.
2015-06-15
Technical Paper
2015-01-2094
William B. Wright, Peter Struk, Tadas Bartkus, Gene Addy
Abstract This paper will describe two recent modifications to the LEWICE software. The version described is under development and not ready for release. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the runback model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel. The runback model was modified to match film models used in the open literature. An empirical water shedding was also implemented. Comparisons were made to thermal deicing data taken at the NRC Altitude Icing Tunnel.
2015-06-15
Technical Paper
2015-01-2097
Timothy A. Shannon, Stephen T. McClain
Abstract Changes in convection coefficient caused by the changes in surface roughness characteristics along an iced NACA 0012 airfoil were investigated in the 61-cm by 61-cm (24 in. by 24 in.) Baylor Subsonic Wind Tunnel using a 91.4-cm (36-in.) long heated aerodynamic test plate and infrared thermometry. A foam insert was constructed and installed on the wind tunnel ceiling to create flow acceleration along the test plate replicating the scaled flow acceleration the along the leading 17.1% (3.6 in.) of a 53.3-cm (21-in.) NACA 0012 airfoil. Two sets of rough surface panels were constructed for the study, and each surface used the same basic random droplet pattern created using the Lagrangian droplet simulator of Tecson and McClain (2013). For the first surface, the roughness pattern was replicated with the same geometry over the plate following a smooth-to-rough transition location noted in historical literature for the case being replicated.
2015-06-15
Technical Paper
2015-01-2096
Philippe Reulet, Bertrand Aupoix, David Donjat, Francis Micheli
Abstract Numerical simulation of ice accretion on aircraft surfaces necessitates a good prediction of wall friction coefficient and wall heat transfer coefficient. After the icing process begins, surface roughness induces a high increase of friction and heat transfer, but simple Reynolds analogy is no longer valid. An experimental campaign is conducted to provide a database for numerical model development in the simple configuration of a heated flat plate under turbulent cold airflow conditions. The flat plate model is placed in the centre of the test section of a wind tunnel. The test model is designed according to constraints for the identification of friction and heat transfer coefficients. It includes three identical resin plates which are moulded to obtain a specified roughness on the upper surface exposed to the flow. Only the 3rd resin plate is heated on its lower face by an electrical heater connected to a temperature regulator.
Viewing 61 to 90 of 16234

Filter