Display:

Results

Viewing 31 to 60 of 17292
2017-03-28
Technical Paper
2017-01-1430
Tony R. Laituri, Scott G. Henry
To consider injury trends and to establish bases for potential future risk analyses, we categorized head injuries in real-world frontal crashes as being "brain-related," "bone-related," and/or "otherwiserelated." Specifically, we studied adult drivers in towaway, 11-1 o'clock, full-engagement frontal crashes in the National Automotive Sampling System (NASS, 1995-2012 calendar years, 1985-2012 model-year light passenger vehicles). Those data were considered subject to three levels injury (AIS1+, AIS2+, AIS3+) , two levels of restraint (properly-belted, unbelted), and two eras of technology, based on driverairbag fitment (Older Vehicles, Newer Vehicles). For each injury level, 88 possible bins of data were formed to quantify injury rates for the various head-injury categories, eras, restraint levels, speed changes, and crash severities.
2017-03-28
Technical Paper
2017-01-0041
Shengguang Xiong, Gangfeng Tan, Xuexun Guo, Longjie Xiao
Automotive Front Lighting System (AFS) can receive the steering signal and the vehicle speed signal to automatically adjust the position of the headlamps light's body. AFS will provide drivers more information of the front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go round a sharp corner, AFS will not work in such a situation. In order to solve this problem, this paper studied how to foresight the front road and optimize the working time of AFS based on GIS (Geographic Information System) and GPS (Geographic Information System). This paper built the model of the vehicle steering characteristics with the relationship between the headlamp steering lighting and the angle of the steering wheel based on the follow-up steering law of headlamps of AFS.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0085
Wanyang Xia, Yahui Wu, Gangfeng Tan, Xianyao Ping, Benlong Liu
Typical vehicle speed deceleration occurs at the highway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more responsible time when running into potential dangerous conditions. The highway exit speed limit sigh (ESLS) is an effect reminder for the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the Color Variable ESLS system, whose installation point is placed considering the vehicle dynamic difference, the traffic condition and the highway geometric design. With this system, the driver could receive the updated speed limit requirement in advance and without distraction produced by eyes contract change between the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles.
2017-03-28
Technical Paper
2017-01-0065
Bülent Sari, Hans-Christian Reuss
Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train and autonomous driving leads to complexity in designing system, hardware, software and safety architecture. The application of multicore processors in the automotive industry is becoming necessary because of the needs for more processing power, more memory and higher safety requirements. Therefore it is necessary to investigate the safety solutions particularly for ASIL-D-Systems. This brings additional challenges because of additional requirements of ISO 26262 for ASIL-D safety concepts. The ISO 26262 provides the possibility to apply decomposition approach for ASIL-D safety requirements. An appropriate decomposition has the advantage to reduce the ASIL rating of the top events.
2017-03-28
Technical Paper
2017-01-1408
Satoshi Kozai, Yoshihiko Takahashi, Akihiro Kida, Takayuki Hiromitsu, Shinji Kitaura, Sadamasa Sawada, Gladys Acervo, Marius Ichim
The goal of both automakers and vehicle users is to minimize the negative impacts of vehicles on society, such as traffic accidents, not only on the road but parking area, optimizing the enjoyment of using a car, comfort, and usability. To realize this, we have already provided automatic brake system (ICS) for static obstacles in parking area. We have also developed the Rear Cross Traffic Auto Brake (RCTAB) system, which detects a vehicle approaching from the sides when backing out of a parking area. We decided RCTAB system specifications based on two information “Approaching vehicle speed in parking area” and “Maximum backing speed”. RCTAB system structure consists of Radar which shared with “Blind Spot Monitor” and ECU which shared with “ICS Computer”. The radar detects the approaching vehicle. The ICS Computer judge Collision prediction and request “Braking Force” and “Driving Force” to Brake and Engine Computer.
2017-03-28
Technical Paper
2017-01-1412
Christopher H. Goddard, David Price
Various mechanisms have been used to drive speedometers and other instrument gauges. This paper reviews the mechanisms used; in particular investigates the ability of stepper motors which have become the most common instrument motor in the last decade to freeze at the apparent reading prior to impact. Stepper motors require power to drive the needle to any indicated position, including having to return it to zero. Hence if power to the instrument is lost as a result of a collision, there is no power to move the needle and it should be left at the reading shown at the moment the power was lost. However, not all stepper motor instruments are the same and before accepting the reading, a number of criteria need to be considered to give a level of confidence in the result. As part of recent ITAI (Institute of Traffic Accident Investigators) crash test events in the UK, a number of instrument clusters were installed in vehicles to simulate both frontal and side impacts.
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Out-of-position (OOP) driver tests were designed to address concerns about airbag introduced injury in situations while the occupant is nearer to the airbag module than in a normal seated position. The 5th percentile female has instrumentation for measuring ATD sternum displacement (potentiometer) and acceleration (accelerometers) which can be used to compute compression rate. This paper documents a study investigating the capability of the chest accelerometers to accurately assess non-distributed loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid 3 - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid 3 – 50th percentile male ATD. A 50th percentile male Global Human Body Model was then applied for enhanced anatomical review.
2017-03-28
Technical Paper
2017-01-0377
Peter Shery, William Altenhof, Ryan Smith, Elmar Beeh, Philipp Strassburger, Thomas Gruenheid
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial cutting and compression modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. Axial cutting of AA6061-T6 extrusions has been shown to be an effective, ductile mode of energy dissipation, yielding a repeatable, nearly constant load/deflection response with a crush force efficiency (CFE) up to 96%. In the present tests, the quasi-static cutting deformation of AZ31B extrusions achieved a respectable CFE of 80%, but revealed a load/deflection response with sharp, minute, rapid fluctuations, indicating an undesirable fracturing failure. Additionally, the average specific energy absorption (SEA) of AZ31B was 11 kJ/kg, which is less than half that seen for AA6061-T6 extrusions of the same geometry (24 kJ/kg).
2017-03-28
Technical Paper
2017-01-1410
Richard F Lambourn, James Manning
It occasionally happens, following a collision between a car and a pedestrian or in a deliberate assault with a motor vehicle, that the pedestrian comes to be caught or wedged beneath the car, and that the driver then travels on for a considerable distance, afterwards claiming to have been unaware of the presence of the person. In such incidents, investigators are often incredulous that the driver should not have been able to “feel” that there was something underneath his car, and that he did not stop at least to find out what the problem was. The only practical way of investigating the matter further is to carry out practical tests with a suitable car and dummy. This paper describes the tests performed by the authors following one such incident, and begins with accounts of two previous incidents investigated in a more subjective fashion.
2017-03-28
Technical Paper
2017-01-0110
Hao Sun, Weiwen Deng, Chen Su, Jian Wu
The ability to recognize traffic vehicles’ lane change maneuver lays the foundation for predicting their long-term trajectories in real-time, which is a key component for Advanced Driver Assistance Systems (ADAS) and autonomous automobiles. Learning-based approach is powerful and efficient, such approach has been used to solve maneuver recognition problems of the ego vehicles on conventional researches. However, since the parameters and driving states of the traffic vehicles are hardly observed by exteroceptive sensors, the performance of traditional methods cannot be guaranteed. In this paper, a novel approach using multi-class probability estimates and Bayesian inference model is proposed for traffic vehicle lane change maneuver recognition. The multi-class recognition problem is first decomposed into three binary problems under error correcting output codes (ECOC) framework.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Tire disablement events can cause a drag force that slows a vehicle’s speed. In this study, the magnitude of the deceleration was measured in 29 high speed tread separation and air loss tests. The tires tested were circumferentially cut to create partial and full tread separations, or prepared to lose air rapidly. The deceleration rates were corrected for the slope of the road, aerodynamic drag and rolling resistance of each vehicle tested. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for PMSMs is one of the most safety critical systems in electric vehicles, because potential failures in this system can lead to serious harm to the human’s body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore micro-controller is presented. Meanwhile, since there are more and more connectivities available on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attack.
2017-03-28
Technical Paper
2017-01-1299
Nagurbabu Noorbhasha, Brendan J. O'Toole
The objective of this research is to optimize the structure of a roll cage for an off-road vehicle that was used for SAE Baja competition by UNLV SAE Baja team. Baja SAE is an intercollegiate competition to design, fabricate, and race a small, single passenger, off-road vehicle powered by a 10 HP Briggs & Stratton 4-Stroke gasoline engine. Since the off-road vehicle is powered by a small capacity engine, the weight of the structure is very critical and must be optimized to improve the performance of the vehicle. In an effort to optimize the structure, a roll cage model was generated using CAD and a finite element (FE) analysis was performed on the structure. A grid independence study was carried out on the FE model to reduce the analysis computation time and space. The effects of stress and deformation of the structure were studied for a linear static frontal impact analysis on roll cage for various mesh sizes.
2017-03-28
Technical Paper
2017-01-1424
Mark Fabbroni, Jennifer Rovt, Mark Paquette
Collision reconstruction often involves calculations and computer simulations, which require an estimation of the weights of the involved vehicles. Although weight data is readily available for automobiles and light trucks, there is limited data for heavy vehicles, such as tractor-semitrailers, straight trucks, and the wide variety of trailers and combinations that may be encountered on North American roads. Although manufacturers always provide the gross vehicle weight ratings (GVWR) for these vehicles, tare weights are often more difficult to find, and in-service loading levels are often unknown. The resulting large uncertainty in the weight of a given truck can often affect reconstruction results. In Canada, the Ministry of Transportation of Ontario conducted a Commercial Vehicle Survey in 2012 that consisted of weight sampling over 45,000 heavy vehicles of various configurations.
2017-03-28
Technical Paper
2017-01-1433
Enrique Bonugli, Joseph Cormier, Matthew Reilly, Lars Reinhart
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and ‘typical’ roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface.
2017-03-28
Technical Paper
2017-01-1456
Shailesh Pawar, Sandeep Sharma, Manoj Sharma
The heavy and light commercial vehicles are equipped with protection devices to enhance the safety of occupants in small vehicles in the event of under run and to reduce the degree of intrusions. These protection devices are SUPD (side under run protection devices), RUPD (rear under run protection devices), FUPD (front under run protection devices). Any passenger vehicles can impact with the heavy vehicles either from rear, front or side and meet the sever accident. During these types of impacts, there is a possibility that the passenger vehicle will go under the front, rear or side part of the truck and bus and cause serious injuries to the occupants. Side underrun protection device is one of the important system implemented in Vehicles as a regulatory requirement (as per IS 14682: 1999) for passive safety of N2 and N3 category vehicles.
2017-03-28
Technical Paper
2017-01-1462
Haiyan Li, Xin Jin, Hongfei Zhao, Shihai Cui, Binghui Jiang, King H. Yang
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinetic responds and injury mechanisim. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Patameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, was analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Vehicle safety is of a paramount importance when it comes to plugging the vehicle to the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accession in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
More than half all pedestrian fatalities occur at night. To address this problem, in the 1950s through 1970s Blackwell conducted considerable research that showed that a way to account for the limitations related to drivers’ expectancies at night would be to limit a driver’s time to view the forward roadway. The reduced information during the limited exposure time became a surrogate for the limited information available to on-road drivers at night. With the release of the SHRP-2 naturalistic database, we are able to see how drivers responded to in-road obstacles at night such as animals, bicyclists, pedestrians, and tree limbs. Using the naturalistic response data as a baseline, safe closed road recognition methodology was developed. The closed road study built upon the early nighttime recognition work by Blackwell, the observers were allowed to view the forward roadway for 1 or ¼ second.
2017-03-28
Technical Paper
2017-01-0361
Amar Marpu, George Garfinkel, Patrick Maguire
Modeling of high voltage (HV) wires is an important aspect of vehicle safety simulations of electrified powertrains, in order to understand the potential tearing of the wire sheath or pinching of high voltage wiring. The behavior of these wires needs to be reviewed in safety simulations to identify potential hazards associated with a high voltage wire being exposed, severed or coming in contact with ground planes during a crash event. Modeling high voltage wire is challenging due to the complexity of the physical composition of the wire, which is usually comprised of multiple strands bundled and often twisted together to form the high voltage electrical conductor. This is further complicated by the existence of external insulating sheathing materials to prevent high voltage exposure during normal operating conditions. This paper describes a proposed method to model and characterize different types of high voltage wires for usage in component and vehicle level safety models.
2017-03-28
Technical Paper
2017-01-1446
Allen Charles Bosio, Paul Marable, Marcus Ward, Bradley Staines
With the introduction of the new USNCAP protocols, which incorporated assessment of a 5th percentile occupant in the passenger seat, a variety of solutions were introduced to achieve 5 star accreditation using additional restraint solutions such as, but not exclusively, knee airbags, dual pretensioning and adaptive venting . The engineering challenge was to understand and design a passenger airbag system that recognized and adapted itself to the smaller, belted, 5th percentile female, while adequately restraining the larger, unbelted, 50th percentile male. In this paper we describe the development of an airbag restraint which achieves 5 star performance levels, where the design focus from the outset was to achieve minimal head, neck & chest injury risk. This was achieved without the need for active adaptive features. The CAE tools Madymo and Radioss were critical to the design of a new patented airbag which repeatedly demonstrated USNCAP RRS <=0.66.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1272
Nick Parson, Jerome Fourmann, Jean-Francois Beland
One of the main applications for extrusions in the automotive sector is crash structures including crash rails, crash cans, bumpers, and structural body components. The objective is usually to optimize the energy absorption capability for a given structure weight. The ability to extrude thin wall multi-void extrusions contributes to this goal. However, the alloy used also plays a significant role in terms of the ability to produce the required geometry, strength which to a large extent controls the energy absorption capability, and the “ductility” or fracture behavior which controls the strain that can be applied locally during crush deformation before cracking. This paper describes results of a test program to examine the crush behavior of a range of alloys supplied by Rio Tinto Aluminium for automotive applications, as a function of processing parameters including artificial aging and quench rate.
2017-03-28
Technical Paper
2017-01-0075
Shinya Kitayama, Toshiyuki Kondou, Hirokazu Ohyabu, Masaaki Hirose, Haneda Narihiro, Ryuta Maeda
In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian.We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influence the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several case of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
2017-03-28
Technical Paper
2017-01-1474
Raed E. El-Jawahri, Agnes Kim, Dean Jaradi, Rich Ruthinowski, Kevin Siasoco, Cortney Stancato, Para Weerappuli
Sled testing simulating a full-frontal rigid barrier impacts were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on aggregate and point estimate bases.
2017-03-28
Technical Paper
2017-01-1438
Felix Lee, Peter Xing, Mike Yang, Janice Lee, Craig Wilkinson, Gunter P. Siegmund
The accuracy and repeatability of crash data recorded by Generation 1, 2 and 3 Toyota Event Data Recorders (EDRs) in low-severity events were previously studied. The Toyota airbag control modules (ACMs) were subject to haversine acceleration pulses, and then the sensitivity of ACM response to characteristics of the crash pulse, EDR generation, and vehicle model was assessed. Linear regression models were created to accurately predict the reference speed change with a known ACM-reported speed change, pulse duration, peak acceleration, and vehicle model. The objectives of the present study are (i) to determine if accuracy trends in low-severity crashes can be applied to mid-severity collisions and (ii) to confirm our hypothesis that the ACMs function similarly on a sled as they did in a car, by comparing the response of ACMs subject to haversine, vehicle-to-vehicle, and vehicle-to-barrier collision pulses.
2017-03-28
Technical Paper
2017-01-1423
Alan F. Asay, Christopher D. Armstrong, Bradley Higgins, John Steiner
Traditional accident reconstruction analysis methodologies include the study of the crush-energy relationship of vehicles. The process of estimating crush-energy and delta-v in real world collisions is primarily based upon a comparison of structural crush between a vehicle involved in a real world collision with that of a test vehicle. This process is well known and documented in the scientific literature. However, this process is limited to both the availability of the crash test data and the proximity of the structure engaged on the vehicle in the test. The largest source of publically available crash tests is the National Highway Traffic Safety Administration (NHTSA) crash tests database. NHTSA has conducted numerous Federal Motor Safety Vehicle Standard (FMVSS) compliance and New Car Assessment Program (NCAP) crash tests of many passenger cars and pickup trucks sold in the United States.
2017-03-28
Journal Article
2017-01-0418
Gregory McCann, Prashant Khapane
An increase in data measurement and recording within vehicles has allowed Anti-lock Braking Systems (ABS) to monitor a vehicles dynamic behavior in far more detail. This increased monitoring helps to improve vehicle response in scenarios such as braking whilst cornering and braking on uneven surfaces. Durability and Robustness (D&R) CAE department within Jaguar Land Rover discovered that the lack of a complex ABS system in virtual vehicle models was contributing to poor lateral and longitudinal loads correlation throughout the suspension and mounting systems. Last year the team started a project to incorporate Continentals ABS system, provided by '©Continental AG' for physical JLR vehicles, into SIMPACK virtual vehicles by means of a co-simulation. The work involved collaboration between 3 departments in Jaguar Land Rover and ultimately led to implementation of the ABS into the JLR wide virtual database.
2017-03-28
Technical Paper
2017-01-0058
Dajiang Suo, Sarra Yako, Mathew Boesch, Kyle Post
Developing requirements for automotive electric/electronic systems is challenging as they are becoming increasingly software-intensive. Increasingly, designs must account for unintended interactions among software features, combined with unforeseen environmental factors. In addition, engineers have to make architectural tradeoff and assign responsibilities to each component in the system before developing safety requirements. ISO 26262 is an industry standard for the functional safety of automotive electric/electronic systems. It specifies various processes and procedures for ensuring functional safety, but does not limit the methods that can be used for hazard and safety analysis. System Theoretic Process Analysis (STPA) is a new technique for hazard analysis in the sense that hazards are caused by unsafe interactions between components (including humans) as well as component failures and faults.
Viewing 31 to 60 of 17292

Filter