Display:

Results

Viewing 271 to 300 of 17402
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Abstract Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-0045
Guirong Zhuo, Cheng Wu, Fengbo Zhang
Abstract Vehicle active collision avoidance includes collision avoidance by braking and by steering. However, both of these two methods have their limitations. Therefore, it is significant to establish the feasible region of active collision avoidance to choose the optimal way to avoid traffic accidents. This paper focuses on the steering control of an autonomous vehicle to track the planned trajectory and to perform an emergency collision avoidance maneuver. Meanwhile, the collision avoidance effect of steering control is compared with that of braking control. The path tracking controller is designed by hierarchical control structure. The upper controller includes model predictive control allocation and speed controller, and the lower is designed by weighted least-squares control allocation for torque allocation. Besides, seven order polynomial is used for path planning.
2017-03-28
Technical Paper
2017-01-0110
Hao Sun, Weiwen Deng, Chen Su, Jian Wu
Abstract The ability to recognize traffic vehicles’ lane change maneuver lays the foundation for predicting their long-term trajectories in real-time, which is a key component for Advanced Driver Assistance Systems (ADAS) and autonomous automobiles. Learning-based approach is powerful and efficient, such approach has been used to solve maneuver recognition problems of the ego vehicles on conventional researches. However, since the parameters and driving states of the traffic vehicles are hardly observed by exteroceptive sensors, the performance of traditional methods cannot be guaranteed. In this paper, a novel approach using multi-class probability estimates and Bayesian inference model is proposed for traffic vehicle lane change maneuver recognition. The multi-class recognition problem is first decomposed into three binary problems under error correcting output codes (ECOC) framework.
2017-03-28
Journal Article
2017-01-0112
Mingming Zhao, Hongyan Wang, Junyi Chen, Xiao Xu, Yutong He
Abstract Rear-end accident is one of the most important collision modes in China, which often leads to severe accident consequences due to the high collision velocity. Autonomous Emergency Braking (AEB) system could perform emergency brake automatically in dangerous situation and mitigate the consequence. This study focused on the analysis of the rear-end accidents in China in order to discuss about the parameters of Time–to-Collision (TTC) and the comprehensive evaluation of typical AEB. A sample of 84 accidents was in-depth investigated and reconstructed, providing a comprehensive set of data describing the pre-crash matrix. Each accident in this sample is modeled numerically by the simulation tool PC-Crash. In parallel, a model representing the function of an AEB system has been established. This AEB system applies partial braking when the TTC ≤ TTC1 and full braking when the TTC ≤ TTC2.
2017-03-28
Technical Paper
2017-01-0116
Ankit Goila, Ambarish Desai, Feng Dang, Jian Dong, Rahul Shetty, Rakesh Babu Kailasa, Mahdi Heydari, Yang Wang, Yue Sun, Manikanta Jonnalagadda, Mohammed Alhasan, Hanlong Yang, Katherine R. Lastoskie
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
2017-03-28
Technical Paper
2017-01-1208
Kristin R. Cooney
Abstract This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
2017-03-28
Technical Paper
2017-01-0032
Wei Yang, Ling Zheng, Yinong Li, Yue Ren, Yusheng Li
Abstract This paper proposed a two-section trajectory planning algorithm. In this trajectory planning, sigmoid function is adopted to fit two tangent arcs to meet limited parking spaces by reducing the radius of turning. Then the transverse preview model is established and the path tracking errors including distance error and angle error are estimated. The weight coefficient is considered to distribute the impact factor of traverse distance error or traverse angle error in the total error. The fuzzy controller is designed to track the two-section trajectory in autonomous intelligent parking system. The fuzzy controller is developed due to its real-time and robustness in the parking process. Traverse errors and its first-order derivative are selected as input variables and the outer wheel steering angle is selected as the output variable in fuzzy controller. They are also divided into seven fuzzy sets. Finally, forty rules are decided to achieve effective trajectory tracking.
2017-03-28
Technical Paper
2017-01-0041
Shengguang Xiong, Gangfeng Tan, Xuexun Guo, Longjie Xiao
Abstract Automotive Front Lighting System(AFS) can receive the steering signal and the vehicular speed signal to adjust the position of headlamps automatically. AFS will provide drivers more information of front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go through a sharp corner, AFS will not work in such a situation. This paper studied how to optimize the working time of AFS based on GIS (Geographic Information System) and GPS(Geographic Information System) to solve the problem. This paper analyzed the process of the vehicle is about to go through a corner. Low beams and high beams were discussed respectively.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1418
Wesley D. Grimes, Thomas Vadnais, Gregory A. Wilcoxson
Abstract The time/distance relationship for a heavy truck accelerating from a stop is often needed to accurately assess the events leading up to a collision. Several series of tests were conducted to document the low speed acceleration performance of a 2016 Kenworth T680 truck tractor equipped with a ten-speed overdrive automated manual transmission in Auto Mode. Throughout the testing, the driver never manually shifted gears. This testing included three trailer load configurations and two different acceleration rates. Data were gathered with a VBOX and the Cummins INSITE software.
2017-03-28
Technical Paper
2017-01-1422
Toby Terpstra, Seth Miller, Alireza Hashemian
Abstract Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
2017-03-28
Technical Paper
2017-01-1420
Kirsten White, Raymond Merala
Abstract This study presents a method to characterize the accuracy and precision of video-acceleration-position (VAP) devices, and presents results from testing of one such vehicle camera (“dashcam”) with global positioning system (GPS) used by taxi companies nationwide. Tests were performed in which vehicle kinematic data were recorded in a variety of real world conditions simultaneously by the VAP device, accelerometers, and a proven GPS-based speed sensing and data acquisition system. Data from the VAP device was compared to data collected by the reference instruments to assess timing, precision, and accuracy of reported parameters. Still images from the VAP video recording were compared with three dimensional laser scan data in order to analyze field of view. Several case studies are discussed, and some guidelines and cautions are provided for use of VAP data in accident reconstruction applications.
2017-03-28
Technical Paper
2017-01-1414
William Bortles, David Hessel, William Neale
Abstract When a vehicle with protruding wheel studs makes contact with another vehicle or object in a sideswipe configuration, the tire sidewall, rim and wheel studs of that vehicle can deposit distinct geometrical damage patterns onto the surfaces it contacts. Prior research has demonstrated how relative speeds between the two vehicles or surfaces can be calculated through analysis of the distinct contact patterns. This paper presents a methodology for performing this analysis by visually modeling the interaction between wheel studs and various surfaces, and presents a method for automating the calculations of relative speed between vehicles. This methodology also augments prior research by demonstrating how the visual modeling and simulation of the wheel stud contact can extend to almost any surface interaction that may not have any previous prior published tests, or test methods that would be difficult to setup in real life.
2017-03-28
Journal Article
2017-01-1416
B. Nicholas Ault, Daniel E. Toomey
Abstract Reconstruction of passenger vehicle accidents involving side impacts with narrow objects has traditionally been approached using side stiffness coefficients derived from moveable deformable barrier tests or regression analysis using the maximum crush in available lateral pole impact testing while accounting for vehicle test weight. Current Lateral Impact New Car Assessment Program (LINCAP) testing includes 20 mph oblique lateral pole impacts. This test program often incorporates an instrumented pole so the force between the vehicle and pole at several elevations along the vehicle - pole interface is measured. Force-Displacement (F-D) characteristics of vehicle structures were determined using the measured impact force and calculated vehicle displacement from on-board vehicle instrumentation. The absorbed vehicle energy was calculated from the F-D curves and related to the closing speed between the vehicle and the pole by the vehicle weight.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1561
Anton A. Tkachev, Nong Zhang
Abstract Rollover prevention is one of the prominent priorities in vehicle safety and handling control. A promising alternative for roll angle cancellation is the active hydraulically interconnected suspension. This paper represents the analytical model of a closed circuit active hydraulically interconnected suspension system followed by the simulation. Passive hydraulically interconnected suspension systems have been widely discussed and studied up to now. This work specifically focuses on the active hydraulically interconnected suspension system. Equations of motion of the system are formalized first. The system consists of two separate subsystems that can be modeled independently and further combined for simulation. One of the two subsystems is 4 degrees of freedom half-car model which simulates vehicle lateral dynamics and vehicle roll angle response to lateral acceleration in particular.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Technical Paper
2017-01-0373
Fabian Jorg Uwe Koark, Christian Beul
Abstract Achieving functional safety in mechatronic systems with growing product functionality is a major challenge in systems engineering. Following the current discussion, this challenge is mostly allocated to electronics and software development. For most of the scenarios this focus is feasible. Product design - the construction of the product - defines the properties and the appearance of the product by shape, material and assembly. So, the product design is often not under control of the safety management system. A hazardous deviation of part shape can be easily identified after the parts product or at least at its mounting. A wrong assembly is controlled by assembly documentation or data (e.g. screw torques) and identified at end of assembly line checks. The identification of a hazardous material choice depends on the product material class. Product materials can be separated into two classes: passive or active materials.
2017-03-28
Technical Paper
2017-01-0377
Peter Shery, William Altenhof, Ryan Smith, Elmar Beeh, Philipp Strassburger, Thomas Gruenheid
Abstract Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
2017-03-28
Technical Paper
2017-01-0031
Mohamed Benmimoun
Abstract In the last years various advanced driver assistance systems (ADAS) have been introduced on the market. More highly advanced functions up to automated driving functions are currently under research. By means of these functions partly automated driving in specific situations is already or will be realized soon, e.g. traffic jam assist. Besides the technical challenges to develop such automated driving functions for complex situations, e.g. construction or intersection areas, new approaches for the evaluation of these functions under different driving conditions are necessary, in order to assess the benefits and identify potential weaknesses. Classical approaches for evaluation and market sign off will require an extensive testing, which results in high costs and time demands. Therefore the classical approaches are hardly feasible taking into account higher levels of support and automation. Today the final sign-off requires a high amount of real world tests.
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
Abstract With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
2017-03-28
Technical Paper
2017-01-0096
Valentin Soloiu, Bernard Ibru, Thomas Beyerl, Tyler Naes, Charvi Popat, Cassandra Sommer, Brittany Williams
Abstract An important aspect of an autonomous vehicle system, aside from the crucial features of path following and obstacle detection, is the ability to accurately and effectively recognize visual cues present on the roads, such as traffic lanes, signs and lights. This ability is important because very few vehicles are autonomously driven, and must integrate with conventionally operated vehicles. An enhanced infrastructure has yet to be available solely for autonomous vehicles to more easily navigate lanes and intersections non-visually. Recognizing these cues efficiently can be a complicated task as it not only involves constantly gathering visual information from the vehicle’s surroundings, but also requires accurate real time processing. Ambiguity of traffic control signals challenges even the most advanced computer decision making algorithms. The vehicle then must keep a predetermined position within its travel lane based on its interpretation of its surroundings.
2017-03-28
Technical Paper
2017-01-0064
Agish George, Jody Nelson
Abstract The ISO 26262 standard for functional safety was first released in 2011 and has been widely incorporated by most OEMs and Tier1 suppliers. The design and conformance of the product to functional safety standards is strongly intertwined with the product development cycle and needs to be carefully managed. The consideration for functional safety needs to begin right from the product’s concept phase through engineering and production and finally decommissioning. The application of the standard in a project can bring significant challenges especially to managers who are relatively new to the standard. This paper provides some guidelines on the key tasks involved in managing ISO26262 in projects and some ways to approach them. The paper is expected to help managers manage ISO26262 compliant projects. The paper also tries to come up with a metric that can be used for resource estimation for implementing ISO26262 in projects.
2017-03-28
Technical Paper
2017-01-0060
Heiko Doerr, Thomas End, Lena Kaland
Abstract The release of the ISO 26262 in November 2011 was a major milestone for the safeguarding of safety-related systems that include one or more electrical and / or electronic (E/E) systems and that are installed in series production passenger cars. Although no specific requirements exist for a model-based software development process, ISO 26262 compiles general requirements and recommendations that need to be applied to model-based development. The second edition of the ISO 26262 has been distributed for review with a final publication scheduled for 2018. This revised edition not only integrates the experiences of the last few years but also extends the overall scope of safety-related systems. In order to determine the necessary adaptions for already existing software development processes, a detailed analysis of this revision is necessary. In this work, we focus on an analysis and the impact on model-based software development of safety-related systems.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
Abstract With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0113
Vaclav Jirovsky
Abstract Today's vehicles are being more often equipped with systems, which are autonomously influencing the vehicle behavior. More systems of the kind and even fully autonomous vehicles in regular traffic are expected by OEMs in Europe around year 2025. Driving is highly multitasking activity and human errors emerge in situations, when he is unable to process and understand the essential amount of information. Future autonomous systems very often rely on some type of inter-vehicular communication. This shall provide the vehicle with higher amount of information, than driver uses in his decision making process. Therefore, currently used 1-D quantity TTC (time-to-collision) will become inadequate. Regardless the vehicle is driven by human or robot, it’s always necessary to know, whether and which reaction is necessary to perform. Adaptable autonomous vehicle systems will need to analyze the driver’s situation awareness level.
2017-03-28
Technical Paper
2017-01-1425
Brian Jones, Michael Calabro, Justin Brink, Scott Swinford
In minor inline rear-end accidents, vehicle damage is the primary tangible indicator of impact severity or vehicle change in velocity (ΔV). A technique for calculating change in velocity based on vehicle damage for collinear impacts involves application of the Momentum Energy Restitution (MER) method. Offset inline minor rear-end impact testing, wherein minimal vehicle bumper or contact surface engagement occurs, has not been readily published to date. Thus, instrumented offset inline rear-end impacts were performed utilizing a 1997 Ford F-150 Pickup, 1996 Kia Sephia, and 1995 Chrysler LeBaron GTC to determine if the MER method can accurately calculate a vehicle’s ΔV when collinear contact does not occur. Vehicle engagement involved 5.1 cm to 76.2 cm of overlap with impact speeds ranging between 0.7 m/s and 4 m/s.
2017-03-28
Technical Paper
2017-01-1419
Smruti Panigrahi, Jianbo Lu, Sanghyun Hong
Abstract Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
2017-03-28
Journal Article
2017-01-1415
John D. Struble, Donald E. Struble
Abstract Crash tests of vehicles by striking deformable barriers are specified by Government programs such as FMVSS 214, FMVSS 301 and the Side Impact New Car Assessment Program (SINCAP). Such tests result in both crash partners absorbing crush energy and moving after separation. Compared with studying fixed rigid barrier crash tests, the analysis of the energy-absorbing behavior of the vehicle side (or rear) structure is much more involved. Described in this paper is a methodology by which analysts can use such crash tests to determine the side structure stiffness characteristics for the specific struck vehicle. Such vehicle-specific information allows the calculation of the crush energy for the particular side-struck vehicle during an actual collision – a key step in the reconstruction of that crash.
Viewing 271 to 300 of 17402

Filter