Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 15830
2014-11-11
Technical Paper
2014-32-0017
R Varunprabhu, Himadri Bushan Das, S Jabez Dhinagar
The steering system of a 3-wheeler vehicle comprises a single column steering tube. The steering inclination at handle bar end is converted to wheel slip or inclination by the steering column. A compromise in either ride or handling is considered in the functional requirement of the 3-wheeler vehicle. The three wheeled vehicle under study is designed for ride comfort and the handling levels are compromised. Variants of the vehicle under study are meant for public passenger transport requirements. Drivers’ ride comfort is considered as the primary functional requirement during design and driver’s steering fatigue is not given importance. For the comfort of driver, steering effort has to be less without compromise in handling characteristics. The driver of this type of vehicle drives the vehicle for 15-18 hours a day. Driver’s feedback suggests high steering effort as a human fatigue failure mode and also a cause of shoulder pain. In this project, a DC motor assisted steering mechanism with an electronic control module has been designed.
2014-11-11
Technical Paper
2014-32-0023
Daniele Barbani, Niccolò Baldanzini, Marco Pierini
Motorcycle accidents are a serious road safety issue in the European Union (EU). Several projects to increase motorcycle safety were funded by the EU within the FP7 (Seventh Frame Program). Many others are likely to be funded within H2020 (Horizon 2020) as well as by national projects of each member state. In this context, numerical simulations play a strategic role since they can be a powerful tool to simplify, assist and speed up the work of the engineers. During the last years, the authors have presented the development and validation of FE models for complete crash test scenarios (i.e. motorcycle with an anthropometric test dummy that impacts against a car) and their use to evaluate head and neck injuries. During the validation phase the authors observed some variability in the results. While variability of the input parameters is a fact in real world crash test, the extent of the variability in the results has to be estimated and assessed in order to improve the design process of safety devices.
2014-11-11
Technical Paper
2014-32-0022
Federico Giovannini, Niccolò Baldanzini, Marco Pierini
The Powered Two-Wheelers (PTWs) control is more complex than any other road vehicle control, due to the implicit instability of those vehicles. Maneuvers such as braking or swerving, require additional driving abilities to prevent the vehicle from falling, in particular during emergency events, such as panic braking or last second swerving. Focusing on emergency braking maneuvers, in those situations the PTW control is very demanding due to the necessity to adjust the braking intensity in the best way. For standard PTWs, a common cause of accident is the loss of adherence and the consequent loss of stability due to emergency braking manoeuvers. It is worth noting that, for a PTW, the loss of stability means a high probability of fall, especially while cornering. Accordingly, the aim of this study is to propose and evaluate a fall detection algorithm for PTWs performing braking manoeuvers, developed to alert an advanced riding assistance system in order to produce proper counteractions against the imminent fall.
2014-11-11
Technical Paper
2014-32-0025
Maki Kawakoshi, Takashi Kobayashi, Makoto Hasegawa
Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). On application to motorcycles of ISO26262 that was intended only for passenger cars, it is considered that it is desirable to estimate the C class by subjective evaluation of expert riders. Expert riders are professional test riders, and they differ from ordinary riders. They can ride safely and evaluate the motorcycle performance stably even if the test condition is at the limit of vehicle performance. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of expert riders and of ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders.
2014-11-11
Technical Paper
2014-32-0016
Sei Takahashi, Hideo Nakamura, Makoto Hasegawa
Abstract ISO 26262 (Road vehicles - Functional safety), a functional safety standard for motor vehicles, was published in November 2011. In this standard, hazardous events associated with each item constituting a safety-related system are assessed according to three criteria, namely, Severity, Exposure, and Controllability, thereby determining ASILs (Automotive Safety Integrity Levels) representing safety levels for motor vehicles. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply ASILs to motorcycles. In the first place, the situation of usage in practice presumably differs between motorcycles and motor vehicles. Accordingly, in this research, we attempted to newly define Motorcycle Safety Integrity Levels (MSILs). We demonstrate in this article that it is to reduce the maximum severity in the Correspondence Diagram between Risk and ASIL (CDRA) and to increase the degree of acceptable risks in view of situations specific to motorcycles.
2014-10-20
WIP Standard
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommendedground flotation analysis methods for both paved and unpaved airfields. The purpose of this document is to identify the recommended aircraft ground flotation analysis methods that should be used for aircraft landing gear design.
2014-10-16
WIP Standard
AS25050B
This specification covers the chromaticity and transmission requirements of equipment light transmitting ware in the descending order of transmission. It is intended for use in military aircraft lighting.
2014-10-16
WIP Standard
J826/3
This document describes the CAD model data of legs and back hardware available from SAE for the HPM-1 three-dimensional H-point machine. The elements of the CAD model include the feet, lower and thighs as well as headroom probe and t-bar. Also included are datum points and lines, and calibration references. The intended purpose for this information is to provide a CAD reference for design and benchmarking as well as a calibration reference for the physical HPM-1 audits. The content and format of the data files that are available are also described. The actual CAD model files are included with this product and are provided in the following formats: CATIA v4 (without parametrics), CATIA v5 (without parametrics), IGES, and STEP.
2014-10-16
Standard
AIR505A
The purpose of this Report was to provide guidance to the commercial transport aviation industry in the selection and usage of oxygen equipment for high altitude transport aircraft. This Report reflects the consensus of views of the various parts of the industry contacted. The document is based on sound engineering and physiological principles and research data. The recommendations embodied in this document are applicable to commercial transport aircraft for operations between 8,000 and 40,000 ft. altitude.
2014-10-16
Standard
AS452B
The purpose of this standard is to establish optimum standards for crew demand and pressure-breathing oxygen mask assemblies for use by crew members in civil aircraft. This standard covers both general type and quick-donning type mask assemblies in the following classes: a. Class A, oronasal, demand b. Class B, oronasal, pressure-demand c. Class C, full face, demand d. Class D, full face, pressure-demand
2014-10-16
Standard
AIR1169C
The scope of this document is to provide a list of documents of types pertaining to the effects of oxygen on ignition and combustion of materials. Consolidating these references in one place makes it easier to find documents of this type as these references are difficult to locate.
2014-10-13
WIP Standard
ARP5150A
This document describes guidelines, methods and tools used to perform the ongoing safety assessment process for transport airplanes in commercial service (hereafter, airplane). The process described herein is intended to support an overall safety management program. It is associated with showing compliance with the regulations, and also with assuring a company that it meets its own internal standards. The methods outlined herein identify a systematic means, but not the only means, to assess ongoing safety. This document does not address the economic decision-making associated with the safety management process. While this decision-making is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. To put it succinctly, this document addresses the "Is it safe?" part of safety management. It does not address the "How much does it cost?" part of the safety management. This document also does not address any specific organizational structures for accomplishing the safety assessment process.
2014-10-09
Article
Not all hands-free technologies are alike, and poorly designed ones can increase driver distraction. That was one of the findings of an AAA Foundation for Traffic Safety study, the results of which it released Oct. 7.
2014-10-09
WIP Standard
J1698/3
This SAE Recommended Practice defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214 and other applicable vehicle level crash testing.
2014-10-09
WIP Standard
AIR4243A
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft systems, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
2014-10-08
WIP Standard
ARP6336
This SAE Aerospace Recommended Practice (ARP) provides technical recommendations for the application, design and development of lighting for Unmanned Aircraft (UA). The recommendations set forth in this document are to aid in the design of UA lighting for the type or size of aircraft and the operation in the National Aerospace System for which the aircraft is intended.
2014-10-07
Magazine
Outlook for autonomous driving includes cloud Connectivity with off-board data and services and among vehicles will be crucial in maintaining safety and security in future autonomous vehicles. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner. SAE 2014 Convergence preview Interest in advanced driver-assistance technologies is surging, with automotive engineers and decision makers at OEMs and suppliers working feverishly on the convenience vs. safety trade-off and other electronics-related challenges. Cooled EGR shows benefits for gasoline engines Exhaust gas recirculation systems now in use on diesel engines are used mainly to meet emissions regulations. In gasoline engines, they are an appealing way to meet ever more stringent fuel-economy standards
2014-10-06
Article
Under a long-term partnership announced Oct. 3, AKKA Technologies Group engineers will work with the company's 3DEXPERIENCE platform to develop the next generation of its autonomously driving Link&Go concept car using Dassault Systèmes applications to ideate, design, simulate, and validate on a single collaborative platform hosted on the Cloud.
2014-10-01
Magazine
Propulsion: Energy Sources Flying on vegetation Avionics/Electronics Avionics heat up, in a good way Unmanned Vehicles Reaching the benchmark in secure unmanned vehicle software Thermal Management Submersion and directed flow cooling technology for military applications RF & Microwave Technology Airborne antenna considerations for C-Band telemetry systems Software-designed system improves wireless test speed and coverage
2014-09-30
WIP Standard
AIR6334
This SAE Aerospace Information Report (AIR) examines the need for and the application of a power train usage metric that can be used to more accurately determine the TBO for helicopter transmissions. It provides a formula for the translation of the recorded torque history into mechanical usage. It provides examples of this process and recommends a way forward. This document of the SAE HM-1 IVHM Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
2014-09-30
Technical Paper
2014-01-2422
Raghuram Krishnamurthy, Rani Mukherjee
Abstract Safety compliance has a new set of difficult questions to address due to the usage of COTS, OSS and externally supplied software code in automotive systems. The use of third-party software component is essential to business as it helps in reduction of cost and development cycle. However, there are many technical risks encountered when incorporating Third-Party Software (TPSW) components into safety related software. Moreover, safety systems conforming to new automotive safety standard ISO 26262 are expected to satisfy criteria for co-existence of TPSW with internal safety related software and legacy code. The purpose is to avoid a potential failure that may be triggered by TPSW which in turn may propagate to cause failure in other software partitions. There are several options available to address the above requirements. We should carefully evaluate the TPSW's functionality and pedigree and apply combination of techniques to assist in supporting the intent of ISO 26262. This paper discusses on the issues concerning insertion of third party software code (OEM supplied code, Tier 2 vendor software) into in-house developed ECU software.
2014-09-30
Technical Paper
2014-01-2423
James Chinni, Ryan Hoover
Abstract Full-scale vehicle crash testing is an accurate method to reproduce many real-world crash conditions in a controlled laboratory environment. However, the costs involved in performing full-scale crash tests can be prohibitive for some purposes. Dynamic sled testing is a lower cost and widely used method to obtain multiple, useful data sets for development of frontal crash mitigating technologies, systems and components. Wherever possible, dynamic sled tests should use vehicle-specific deceleration pulses determined from full-scale vehicle crash tests. This paper establishes a dynamic sled test protocol based on data collected from eight full-scale heavy vehicle frontal crash tests. The sled test protocol is intended to be utilized as a basis for building a body of knowledge needed to update heavy vehicle frontal impact test recommended practices. These recommended practices provide direction for the development of frontal crash mitigating technologies, systems and components. Additionally, the performance of some frontal crash occupant protection technologies found in heavy vehicles is evaluated.
2014-09-30
Technical Paper
2014-01-2420
James Chinni, Robert Butler, Shu Yang
Abstract Federal Motor Carrier Safety Requirement (FMCSR) 393.76(h) states that “a motor vehicle manufactured on or after July 1, 1971 and equipped with a sleeper berth must be equipped with a means of preventing ejection of the occupant of the sleeper berth during deceleration of the vehicle.” [1] Furthermore, this standard requires that “the restraint system must be designed, installed and maintained to withstand a minimum total force of 6,000 pounds applied toward the front of the vehicle and parallel to the longitudinal axis of the vehicle.” [1] Today, sleeper berths are equipped with sleeper restraint systems that function to contain the sleeper occupant inside the sleeper berth during reasonably foreseeable crashes. To assess the effectiveness of sleeper restraint systems, computer simulation models of the sleeper cab environment and these restraint systems were developed, with a simulated supine occupant in the sleeper. The model was evaluated using two different rollover crash scenarios.
2014-09-30
Technical Paper
2014-01-2384
Prashant Shinde, Pratik Gore
Abstract This paper is an attempt to address one of the causes of catastrophic failures attributed to incidents of fire and smoke in commercial vehicles during last few years in China and India which have resulted in a considerable number of casualties. Some of the accidents encountered happened because of a crash with fire originating from the fuel tank. This was attributed to fuel leakage and excessive heat produced due to friction of debris with the fuel tank which happened within a few seconds of the crash. A Fuel-Tank Safety ECU for preventing such fire-mishaps shall be designed for spotting this failure and activating prevention methods in order. This ECU shall process the data coming from temperature-sensor and fuel-pressure sensor placed on the fuel tank of the vehicle. This real-time data shall be compared with the previously computed values and then the delta-differentiated value shall be used to conclude the likelihood of a fire-occurrence. This ECU shall then timely activate the fire-preventive agents along with sounding an audio-visual alert to notify the vehicle driver and passengers.
2014-09-30
Technical Paper
2014-01-2388
Jeffrey K. Ball, Mark Kittel, Trevor Buss, Greg Weiss
Abstract Trucking fleets are increasingly installing video event recorders in their vehicles. The video event recorder system is usually mounted near the vehicle's rear view mirror, and consists of two cameras: one looking forward and one looking towards the driver. The system also contains accelerometers that record lateral and longitudinal g-loading, and some may record vehicle speed (in mph) based on GPS positions. The unit constantly monitors vehicle acceleration and speed, and also records video. However, the recorded data is only stored when a preset acceleration threshold is met. The primary use of the system is to assist fleets with driver training and education, but the recorded data is also being used as a tool to reconstruct accidents. By integrating the accelerometer data, the vehicle speed and distance traveled during the event can be calculated. However, the calculated speeds and distances from video event recorder data may differ from reconstructions based on data taken from engine control modules (ECM's) or classic reconstruction techniques.
2014-09-30
Technical Paper
2014-01-2398
Sanket Pawar
Abstract Off-road commercial vehicles many times have to work at remote areas in poor working conditions like reduced visibility due to fog, snow, inadequate ambient lighting, dust etc. They may not have any access to emergency facilities in such places. Challenging geographical terrains and adverse weather conditions makes the situation worse. The combination of both can further degrade working conditions. The operator may need to either work or guide his vehicle through tight places or in hilly areas having such conditions. That imposes many challenges to operator in terms of efficiency & safety of both operator & vehicle. In an effort to increase productivity and efficiency operator may miss to look at safety aspects consequently, leading to accidents that can incur heavy losses due to damages to vehicle further delaying the work. It can even lead to a life threatening emergency in some cases. On the other hand, decrease in efficiency results in increased cost of operation due to unnecessary wastage of fuel & delays in getting the work done.
2014-09-30
Technical Paper
2014-01-2309
Fatih Kosar, Mehmet Burak Yegin, Okan Dogru, Cüneyt Akarsu
Abstract Nowadays, a lightweight component design plays a significant role in both cost of a vehicle and fuel economy in competitive heavy duty truck industry. This paper describes the optimization study of an Anti-Roll Bar (ARB) bracket used in a heavy duty truck. ARB system is used to avoid rolling of a vehicle. In order to measure real forces acting on ARB links, calibration study is performed in laboratory conditions. According to this study, measured strains are correlated with theoretical strain-force curve. After the correlation study, fatigue based topology optimization is made on ARB cast iron bracket according to correlated Road Load Data (RLD) which is performed at Proving Ground. Most of the optimization studies in the literature depend on maximum static loading condition. However, many components or structures in the industry subjected to fluctuating loads when they are in service condition. Small loads in a fluctuating load domain may cause potential danger in the design because there will be damage accumulation on the part when those loads are repeated.
Viewing 1 to 30 of 15830

Filter

  • Article
    492
  • Book
    105
  • Collection
    42
  • Magazine
    617
  • Technical Paper
    10009
  • Standard
    4565