Display:

Results

Viewing 1 to 30 of 15797
Technical Paper
2014-09-30
Ying Wan, Dong Zhang, Zhao Weiqiang, Changfu Zong, Jongchol Han
The braking system is the most important component of vehicleto ensure the vehicle safety, especially for commercial vehicles which are used to transport goods or passengers. In recent years, electronic braking system(EBS) has developed rapidly. EBS enhances vehicle safety and improves the performance of braking, and pneumatic EBS is getting wide-spread incommercial vehicles. However, the performance of pneumatic EBS is seriously affected by the hysteresis characteristics of pressure responses, which would increase the braking distance and may cause fatal traffic accidents, so many researchers are studying on controlling hysteresis characteristics. Therefore, this paper establishes an EBS simulation platform which can reflect the hysteresis characteristics of the EBS components. The results of the EBS simulation platform are compared with that of a test bed to verify the accuracy of the platform. After that, in order to ensure the feasibility of this simulation platform in developing EBS strategy, it is used in developing a hysteresis compensation control strategy.
Technical Paper
2014-09-30
Dong Zhang, Changfu Zong, Ying Wan, Wei-qiang Zhao, Hongyu Zheng
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early study, this paper aims at the development and research on control strategy of Advanced Electronic Braking Systems for commercial vehicle. It mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and axle loads will be calculated dynamically and distributed the ideal braking. Through braking intention recognition, the brake pad wear control intervenes when braking uncritically and detecting a difference in the pads between the front and rear axles. The brake assistant supports the driver during the full application of the brake and the braking distance is shortened due to the reduction in response time. In the study of stability control algorithms of multiple targets, using the simplified model, a Kalman filter estimator and an Adaptive Kalman filter estimator of heavy duty vehicles are built, by which the estimations about parameters and states are realized successfully.
Technical Paper
2014-09-30
Xinyu Ge, Jonathan Jackson
Cost reduction in automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OMEs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in automotive industry dramatically improved production efficiency in past ten years, they are still facing up with the pressure of cost control. The big challenge in the cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs construct constrains for the traditional economic expansion model. Lean manufacturing and other traditional Six Sigma processes have been widely utilized to reduce waste and improve efficiency further in the automotive industry.
Technical Paper
2014-09-30
Gregory J. Burek, Thomas Neyhart
PURPOSE The purpose of this paper is to introduce the concept of Knowledge Aware Engineering (KAE), and explain how it is already providing competitive advantage in the design and manufacturing of complex products. ABSTRACT Engineering intensive industries, such as aerospace, automotive and commercial vehicle, are facing increasing global competition. At the same time, their products are becoming more complex, incorporating advancing technologies while facing increasing regulations and requirements. During design, many of these are in conflict with each other, requiring a method for balancing these conflicts to increase the optimization of the design. Engineers must look at the entire system and align increased System Engineering requirements such as quality, reliability, safety, flexibility, interoperability, manufacturability, to name a few. For many of these disciplines, a designer or engineer is neither trained nor understands the integration issues. In response, companies have spent significant time, money, and effort to identify and capture best practices, lessons learned, design rules and other technical knowledge to improve first time quality and reduce total operating cost.
Technical Paper
2014-09-30
James Chinni, Robert Butler, Shu Yang
Federal Motor Carrier Safety Requirement (FMCSR) 393.76(h) states that “a motor vehicle manufactured on or after July 1, 1971 and equipped with a sleeper berth must be equipped with a means of preventing ejection of the occupant of the sleeper berth during deceleration of the vehicle.” [1] Today, sleeper berths are equipped with sleeper restraint systems that function to contain the sleeper occupant inside the sleeper berth during reasonably foreseeable crashes. To assess the effectiveness of sleeper restraint systems, computer simulation models of the sleeper cab environment and these restraint systems was developed, with a simulated supine occupant in the sleeper. The model was evaluated using two different rollover crash scenarios. The first rollover scenario used measurements from a previously reported tractor-trailer, driver side leading, quarter-turn rollover crash test. The second rollover scenario was based on reconstruction of a very severe crash that occurred on a mountain road, where a tractor-trailer rolled, passenger side leading.
Technical Paper
2014-09-30
Marc Auger, Larry Plourde, Melissa Trumbore, Terry Manuel
Design of body structures for commercial vehicles differs significantly from automotive due to government, design, usage requirements. Specifically the design of heavy truck doors differ as they are not required to meet side impact requirements due to their height off the ground as compared to automobiles. However, heavy truck doors are subjected to higher loads, longer life and less damage from events. Past aluminum designs relied either on bent extrusions around the periphery of the door or multiple steel and/or aluminum reinforcements joined to the inner in order to provide the necessary structure. Doors using aluminum extrusions for the peripheries were limited to two dimensional bending for the extrusions resulting in a planar door with limited styling features an opportunity for aerodynamic improvements. Doors with stamped reinforcements and door mounted mirrors require joining the inner and outer structure at the lower mirror mount forcing the use of a division bar to split the glass that impedes vision and drives cost for the extra parts.
Technical Paper
2014-09-30
Massimiliano Ruggeri, Carlo Ferraresi, Luca Dariz, Giorgio malaguti MD
The world of electronics is rapidly changing due to the new functional safety regulations, both for Construction Equipments and for Agricultural Machines. From the 2014 the new ISO4254 recalls the ISO25119, applying the functional safety to all Agricultural machines other than Tractors. But Tractors will be involved in new functional safety requirements from 2016, being analyzed under the ISO25119 statements. Functional safety requirements and solutions are more expensive in proportion for small machines: lower cost machines with less power but same functionalities with respect to the big machines. The paper will show a real electronic control unit design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the Electronic Control Unit (ECU) was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions.
Technical Paper
2014-09-30
Sanket Pawar
Many time off-road vehicles need to perform variety of jobs. That means vehicles may need to handle variety of attachments for various reasons like type & scale of job to be performed, different terrain & geographical condition, load on machine etc. With different attachments, components used in the attachments may also change based on job demand i.e. accuracy & resolution required, operator preferences, environmental & cost factor etc. To make automotive system compatible with range of attachments having variety of components demand high degree of customization in the system. To cope up with these demands, system architects either have to create different system architecture for different attachments/implements or they have to make the system architecture highly modular. Prior method of creating different system architecture further increasing the cost of development and testing. As every architecture has to go through entire product development life-cycle, this increases time to market further adding to cost.
Technical Paper
2014-09-30
Venkatesan C, DeepaLakshmi R
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care to be taken while selecting the appropriate material. Polyamide 12(PA12) is the commonly available material which is currently used for ABT applications. Availability and cost factor is always a major concern for commercial vehicle industries. This paper presents the development of an alternative material which has superior heat resistance. Thermoplastic copolyester (TEEE) materials were tried in place Polyamide 12 for many good reasons. The newly developed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn’t require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time. Also it has got better heat ageing properties and higher burst pressure at elevated temperature.
Technical Paper
2014-09-30
Jeffrey K. Ball, Mark Kittel, Trevor Buss, Greg Weiss
Trucking fleets are increasingly installing DriveCam video event recorders in their vehicles. The DriveCam system is usually mounted near the vehicle’s rear view mirror, and consists of two cameras – one looking forward and one looking towards the driver. The DriveCam system also contains accelerometers that record lateral and longitudinal g-loading, and some may record vehicle speed (in mph) based on GPS positions. The DriveCam unit constantly monitors vehicle acceleration and speed, and also records video. However, the recorded data is only stored when a preset acceleration threshold is met. The stored data is then uploaded to the DriveCam event center, where it can be analyzed to review driver performance as well as the events before and after the triggering event. The primary use of the system is to assist fleets with driver training and education. However, the recorded data is also being used as a tool to reconstruct accidents. By integrating the accelerometer data, the vehicle speed and distance traveled during the event can be calculated.
Technical Paper
2014-09-30
James Chinni, Ryan Hoover
Full-scale vehicle crash testing is an accurate method to reproduce many real-world crash conditions in a controlled laboratory environment. However, the costs involved in performing full-scale crash tests can be prohibitive for some purposes. Dynamic sled testing is a lower cost and widely used method to obtain multiple useful data sets for development of frontal crash mitigating technologies, systems and components. Wherever possible, dynamic sled tests should use vehicle-specific deceleration pulses determined from full-scale vehicle crash tests. This paper establishes a dynamic sled test protocol based on data collected from a small number of full-scale heavy vehicle frontal crash tests. The sled test protocol is intended to be utilized as a basis for building a body of knowledge needed to update heavy vehicle frontal impact test recommended practices. These recommended practices provide direction for the development of frontal crash mitigating technologies, systems and components.
Technical Paper
2014-09-30
Raghuram Krishnamurthy, Dr. Rani Mukherjee
Modern vehicles employ dozens of electronic systems.The number of embedded systems in the vehicle is ever increasing and this increases the complexity. According to ISO 26262,an automotive safety standard, an ECU which contains SW with different ASIL ratings should meet the criteria for coexistence of elements. If the embedded software has to implement software components of different ASILs, or safety-related and non-safety-related software components, then all of the embedded software shall be treated in accordance with the highest ASIL, unless the software components meet the criteria for coexistence.However meeting these criteria can be complex and time-consuming. Today’s ECU SW unavoidably has externally developed SW from third party suppliers and integrating them into an existing ASIL SW is always a challenge. This paper explores the challenges and possible strategies for integrating externally developed SW into an ECU.
Technical Paper
2014-09-16
Rodrigo Felix, John Economou, Kevin Knowles
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoitre dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on inherently vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures. With this in mind the present work will describe a monitoring system whose purpose is to monitor UAS mission profile implementation at both high level mission execution and at lower level software code operation to tackle the specific threats of malicious code and possible spurious commands received over the vehicle’s data links.
Technical Paper
2014-09-16
Zachary A. Collier, Steve Walters, Dan DiMase, Jeffrey M. Keisler, Igor Linkov
Counterfeit electronic components entering into critical infrastructure and applications through the global supply chain threaten the economy and national security. In response to the growing threat from counterfeits, the Society of Automotive Engineers G-19 Committee is developing AS6171. This aerospace standard is focused on testing facilities with a goal of standardizing the process of counterfeit detection. An integral part of the standard is a semi-quantitative risk assessment method. This method assigns risk scores to electronic components based on a number of relevant criteria, and places the components into one of five risk tier levels corresponding to an appropriate level of laboratory testing to ensure the authenticity of the component. In this way, the methodology aims at standardizing the risk assessment process and bases the identified risk as guidance for commensurate testing protocols. This paper outlines the risk assessment method contained within AS6171 and briefly explores other complementary efforts and research gaps within the G-19 and electronics community.
Book
2014-09-04
William C. Messner
Over the years, the DARPA Challenges in the United States have galvanized interest in autonomous cars, making them a real possibility in the mind of the public, but autonomous and unmanned vehicles have been increasingly employed in many roles on land, in the water, and in the air. Military applications have received a great deal of attention, with weaponized unmanned aircraft (drones) being the most prominent. However, unmanned vehicles with varying degrees of autonomy already have many civilian applications. Some of these are quite familiar (such as the Roomba autonomous vacuum cleaner), while others remain largely out of the public eye (such as autonomous farm equipment). Additional applications and more capable vehicles are rapidly coming to the markets in the years ahead. This book examines a number of economically important areas in which unmanned and autonomous vehicles, also understood here as autonomous technologies, are already used or soon will be. Co-published by SAE International and AUVSI, Autonomous Technologies: Applications That Matter will assist the reader in identifying profitable opportunities and avoiding costly misconceptions with respect to civilian applications of autonomous vehicle technologies as it brings together chapters on how air, water, and ground vehicles are becoming ever more used and appreciated.
WIP Standard
2014-07-22
A program, which ensures quality with the relevant standards shall be introduced for all on-line Stations where de-icing/anti-icing of aircraft on the ground is either normally carried out, or where local conditions may periodically lead to a requirement for airplcraft to be de-iced/anti-iced. Deficiencies, in regard to a Station's local de-icing/anti-icing procedures, shall be identified and subsequently actioned through this program, thereby ensuring that the required safety standards are maintained.
Standard
2014-07-22
This AS describes a standard method for viscosity measurements of thickened (AMS1428) anti-icing fluids. Fluid manufacturers may publish alternate methods for their fluids. In case of conflicting results between the two methods, the manufacturer method takes precedence. To compare viscosities, exactly the same measurement elements (including spindle and container size) must have been used to obtain those viscosities.
WIP Standard
2014-07-18
The terms included in the Glossary are general in nature and may not apply to all manufacturers’ systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
Article
2014-07-15
Powerful visual computing processors for dashboard displays are now taking on safety-critical driver-assistance functions.
Article
2014-07-14
Company engineers see their AR-HUD technology as the beginning of a new generation of more capable head-up display systems that will eventually help enable automated and autonomous vehicles.
Standard
2014-07-14
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of an equipment mount device or system when exposed to a frontal or side impact (i.e. a crash impact). Its purpose is to provide equipment manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure equipment mount devices or systems meet the same performance criteria across the industry. Prospective equipment mount manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Standard
2014-07-14
This SAE Recommended Practice describes the testing procedures required to evaluate the integrity of a ground ambulance-based patient litter, litter retention system, and patient restraint when exposed to a frontal or side impact. Its purpose is to provide litter manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent ensures the patient litter, litter retention system, and patient restraint utilizes a similar dynamic performance test methodology to that which is applied to other vehicle seating and occupant restraint systems. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Standard
2014-07-11
This document specifies that black is the only color that can be used for the insulator at the bottom of the base of T-1 and T-1 ¾ Flanged Base lamps.
Standard
2014-07-11
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard
2014-07-11
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
WIP Standard
2014-07-11
The purpose of this SAE Standard is to offer simplified and prioritized guidelines for collecting and preserving on-scene data related to motor vehicle accidents. It is intended that these guidelines improve the effectiveness of data collection, which will assist subsequent analysis and reconstruction of a particular incident. The document is to guide early data collectors whose objectives include documenting information related to the incident. it may be used by law enforcement personnel, safety officials, insurance adjusters and other interested parties. The document identifies categories of scene physical features that deteriorate relatively quickly and recomends documentation task priorities. Detailed methods of collecting data are not part of this document. However, some widely used methods are described in the references in Seciton 2.
Magazine
2014-07-09
Simulations for safety Improved design tools let aircraft developers ensure that systems, software, and mechanical elements all work together.
Viewing 1 to 30 of 15797

Filter

  • Article
    476
  • Book
    116
  • Collection
    42
  • Magazine
    615
  • Technical Paper
    10004
  • Subscription
    4
  • Standard
    4540