Display:

Results

Viewing 1 to 30 of 17295
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-04-11
Book
This is the electronic format of the Journal.
2017-03-28
Technical Paper
2017-01-1447
Pardeep K. Jindal, Rahul Makwana, Djamal Midoun, Edward Abramoski, Matthew Makowski, Ravi Kodwani
In 2012, the Insurance Institute for Highway Safety (IIHS) added a new frontal impact test to its vehicle crashworthiness rating protocol, often referred to as the “Small Overlap Rigid Barrier” (SORB) test. The objective of the present numerical study was to develop an innovative driver knee airbag (KAB) to address anthropomorphic test device (ATD) Knee-Thigh-Hip (KTH) response relative to the IIHS’s rating system of “Good, Acceptable, Marginal or Poor”. The approach used in this study utilized advanced morphing techniques in a sophisticated finite element (FE) model of a vehicle with an ATD and a restraint system. The key challenge in the study was to manage vehicle deformation with minimal changes to the KAB inflator and volume. Several KAB designs in terms of (width, height and depth) were simulated until a design resulted in changing the KTH rating from “Poor” to “Good”.
2017-03-28
Technical Paper
2017-01-1457
Jingwen Hu, Nichole Ritchie Orton, Rebekah Gruber, Ryan Hoover, Kevin Tribbett, Jonathan Rupp, Dave Clark, Risa Scherer, Matthew Reed
Among all the vehicle rollover test procedures (SAE J2114 dolly, curb-trip, corkscrew ramp, ditch/embankment, soil trip, etc.), the dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which prevents a vehicle over 5,000 kg to be tested, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology focused on evaluating crashworthiness and occupant protection that does not require an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb. The cart stopping pulse is modulated using two honeycomb blocks.
2017-03-28
Technical Paper
2017-01-0060
Heiko Doerr, Thomas End, Lena Kaland
The release of the ISO 26262 in November 2011 was a major milestone for the safeguarding of safety-related systems that include one or more electrical and / or electronic (E/E) systems and that are installed in series production passenger cars. Although no specific requirements exist for a model-based software development process, ISO 26262 compiles general requirements and recommendations that need to be interpreted for model-based development. The second edition of the ISO 26262 is about to be released. This revised edition not only integrates the experiences of the last few years but also extends the overall scope of safety-related systems. In order to determine the necessary adaptions for already existing software development processes, a detailed analysis of this revision is necessary. In this work, we focus on an analysis and the impact on model-based software development of safety-related systems.
2017-03-28
Technical Paper
2017-01-0045
Guirong Zhuo, Cheng Wu, Fengbo Zhang
Vehicle active collision avoidance includes collision avoidance by braking and by steering, however both of these two methods have their limitations. When the vehicle’s speed is high or road adhesion coefficient is small, critical braking distance is long by braking to avoid collision, and collision avoidance by steering is restricted to the vehicle driving condition on the side lane. Therefore, it is significant to establish the feasible region of active collision avoidance to choose the optimal way to avoid traffic accidents. Model predictive control (MPC), as an optimized method, not only makes the control input of current time to achieve the best, but also can achieve the optimal control input in a future time.
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
With increasing levels of driving automation, the information provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensor’s reliability is therefore crucial for ensuring the safety of the customer functions. There are currently no standardized procedures or guidelines for demonstrating the reliability of the sensor information. Engineers are faced with setting up test procedures and estimating efforts. Statistical hypothesis tests are commonly employed in this context. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. It also enables a more realistic representation of dependencies among errors.
2017-03-28
Technical Paper
2017-01-0363
Karthik Ramaswamy, Vinay L. Virupaksha, Jeanne Polan, Biswajit Tripathy
EPP foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles are predominantly driven by CAE. This makes it necessary to have validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and their effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties. In order to understand the effect of inter-supplier variation on vehicle performance, LSDYNA rate dependent material model is developed and validated for low speed and pedestrian protection load cases.
2017-03-28
Technical Paper
2017-01-0373
Fabian Jorg Uwe Koark, Christian Beul
Motivation – Achieving functional safety in mechatronic systems with growing product functionality is a major challenge in systems engineering. Following the current discussion, this challenge is mostly allocated to electronics and software development. For most of the scenarios this focus is feasible. Product design – the construction of the product – defines the properties and the appearance of the product by shape, material and assembly. So, the product design is often not under control of the safety management system. A hazardous deviation of part shape can be easily identified after the parts product or at least at its mounting. A wrong assembly is controlled by assembly documentation or data (e.g. screw torques) and identified at end of assembly line checks. The identification of a hazardous material choice depend on the product material class. Product materials can be separated into two classes: passive or active materials.
2017-03-28
Technical Paper
2017-01-1419
Smruti Panigrahi, Jianbo Lu, Sanghyun Hong
Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. Frequent light crashes reveal not only abusive driver behaviors but also increase the probability of damaging a vehicle. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction.
2017-03-28
Technical Paper
2017-01-1436
Edward Fatzinger, Jon Landerville
Various electronic control units from Kawasaki Ninja 300 motorcycles were tested in-situ in order to examine heuristically the capabilities and behavior of the event data recorders (EDR). The relevant hexadecimal data was downloaded from the ECU and translated using known and historically proven applications. The hexadecimal translations were then confirmed using data acquisition systems as well as the Kawasaki Diagnostic Software (KDS). Numerous tests were then performed to establish the algorithms which cause the EDR to record data. It was determined that the EDR recording “trigger” was caused by the activation of the tip-over sensor, which in turn shuts the engine off. In addition, specific conditions must be met with regards to the rear wheel rotation prior to engine shut-down.
2017-03-28
Technical Paper
2017-01-1202
Ben Tabatowski-Bush
The Battery Monitoring Integrated Circuit (BMIC) is a key technology for Battery Electronics in the electrification of vehicles. Generally speaking, every production hybrid, plug-in hybrid, and battery electric vehicle uses some type of BMIC to monitor the voltage of each lithium battery cell. In order to achieve Functional Safety for the traction battery packs for these electrified vehicles, most designs require higher ASIL ratings for the BMIC such as C or D. For the entire market of available BMIC’s, there is a generic feature set that can be found on almost every IC on the market, such as a front end multiplexer, one or more precision references, one or more Analog to Digital (A/D) converters, a power supply, communications circuits, and window comparators. There is also a fairly consistent suite of self-diagnostics, available on just about every available BMIC, to detect failures and enable achievement of the appropriate ASIL rating.
2017-03-28
Technical Paper
2017-01-1459
HangMook Kim, Jae Kyu Lee, Jin Sang CHUNG
If the door opening problem occurs in side crash, it results in raising the possibility of passenger ejection and serious injury. Therefore, for the sake of passenger’s safety, various research on preventing door opening during side impact test is conducted. Even though there are many causes for door opening, this study dealing with inertia effect caused by impact energy. Until now, there have been two classical methods for preventing the door opening. One is increasing the balance weight and spring force. That counterbalances the outside handle’s opening direction moment. The other is the application of the blocking lever. That prohibits the outside handle’s movement mechanically in the event of side crash. Recently, it is shown that the trend of crash test enhances the safety of the passengers by increasing the speed and weight of MDB. As a result, the impact energy transmitted to the vehicle increases.
2017-03-28
Technical Paper
2017-01-0107
Arvind Jayaraman, Ashley Micks, Ethan Gross
Recreating traffic scenarios for testing autonomous driving in the real world requires significant time, resources and expense, and can present a safety risk if hazardous scenarios are to be tested. Having a 3D virtual environment to enable testing many of these traffic scenarios on the desktop or on a cluster reduces the amount of required road tests significantly. In order to facilitate the development of perception and control algorithms for level 4 autonomy, with potential applications to level 2 active safety systems as well, a shared memory interface between MATLAB/Simulink and Unreal Engine 4, such that perception and/or control algorithms running within or interfacing with MATLAB/Simulink can receive virtual sensor data generated in an Unreal Engine 3D virtual environment, and send information such as vehicle control signals back to the virtual environment.
2017-03-28
Technical Paper
2017-01-0096
Valentin Soloiu, Bernard Ibru, Thomas Beyerl, Tyler Naes, Charvi Popat, Cassandra Sommer, Brittany Williams
An important aspect of an autonomous vehicle system, aside from the crucial features of path following and obstacle detection, is the ability to accurately and effectively recognize visual cues present on the roads, such as traffic lanes, signs and lights. This ability is important because very few vehicles on the road are autonomously driven and must integrate with conventionally operated vehicles. An enhanced infrastructure has yet to be available solely for autonomous vehicles to more easily navigate lanes and intersections non-visually. Recognizing these cues efficiently can be a complicated task as it not only involves constantly gathering visual information from the vehicle’s surroundings but also requires accurate processing. Ambiguity of traffic control signals challenges even the most advanced computer decision making algorithms. The vehicle then must keep a predetermined position within its travel lane based on its interpretation of its surroundings.
2017-03-28
Technical Paper
2017-01-1208
Kristin R. Cooney
This paper will discuss how Ford Motor Company meets the testing criteria of UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium ion batteries can be safely transported. The battery safety regulations that we were familiar with, such as FMVSS and ECE, include post-crash criteria that is clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function; the tests in this regulation are among the more stringent validation tests that we perform. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. We created internal documents detailing exactly how to run the tests to improve consistency among our test engineers.
2017-03-28
Technical Paper
2017-01-1448
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli
In 2011, Ford Motor Company introduced the first rear seat inflatable belts in Ford Explorer. Interaction of rear inflatable seat belts with child restraint systems (CRS) when it is used to install a CRS or used in conjunction with belt position booster is an important consideration. This paper describes a standardized test methodology to assess the interaction of CRS with inflatable seat belts through frontal impact sled tests. Details of test methods including construction of additional fixtures and hardware are highlighted. This procedure is designed to enable test labs capable of running FMVSS 213 testing to adapt this test method, with minimal fabrication, by utilizing existing test benches. The test methodology can be used to quantify the effect of the inflatable seat belt compared to a standard lap/shoulder belt on CRS in terms of ATD/CRS responses and kinematics. Sample results are presented for various CRS types.
2017-03-28
Technical Paper
2017-01-1561
Anton A. Tkachev, Nong Zhang
Rollover prevention is one of the prominent priorities in vehicle safety and handling control. A promising alternative for roll angle cancellation is the active hydraulically interconnected suspension. This paper represents the analytical model of active hydraulically interconnected suspension system followed by the general simulation. Passive hydraulically interconnected suspension systems have been widely discussed and studied up to now. This work specifically focuses on the active hydraulically interconnected suspension system. Equations of motion of the system are formalised first. The entire system consists of two separate systems that can be modelled independently and further combined together for simulation. One of the two systems is 4 degrees of freedom half-car model which simulates vehicle lateral dynamics and vehicle roll angle response to lateral acceleration in particular.
2017-03-28
Technical Paper
2017-01-1675
Genís Mensa, Núria Parera, Alba Fornells
Nowadays, the use of high-speed digital cameras to acquire relevant information is a standard for all laboratories and facilities working in passive safety crash testing. The recorded information from the cameras is used to develop and improve the design of vehicles in order to make them safer. Measurements such as velocities, accelerations and distances are computed from high-speed images captured during the tests and represent remarkable data for the post-crash analysis. Therefore, having the exact same position of the cameras is a key factor to be able to compare all of the values that are extracted from the images of the tests carried out within a long-term passive safety project. However, since working with several customers involves a large amount of different cars and tests, facilities have to readapt for every test mode making it difficult for them to reproduce the correct and precise position of the high-speed cameras throughout the same project.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Today, highly automated driving is paving the road for full autonomy. From basic cruise control to complex automated systems, there is a wide range of technology on the road and more highly automated systems are being rigorously tested that are soon going to be available to consumers. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Lightning strikes on automobiles are usually deemed rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicle's metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, have wide opening of windows, and plastic body parts are becoming popular. Lightning can run into the cabin of vehicles through radio antennas and hit the driver, as it happened in Japan last year. As the shark-fin antenna, which has wiring above the heads of occupants, becomes more popular, it may pose an increased risk of lightning attack to the passengers. In the near future, automobiles may be integrated into the electric power grid as people ponder about the smart grid and vehicle to grid (V2G) concepts. Even today electric vehicles (EV) and plug-in hybrid vehicle (PHEV) are being charged at home or in parking lots.
2017-03-28
Technical Paper
2017-01-0064
Agish George, Jody Nelson
The ISO 26262 standard for functional safety was first released in 2011 and has been widely incorporated by most OEMs and Tier1 suppliers. The design and conformance of the product to functional safety standards is strongly intertwined with the product development cycle and needs to be carefully managed. The consideration for functional safety needs to begin right from the product’s concept phase through engineering and production and finally decommissioning. The application of the standard in a project can bring significant challenges especially to managers who are relatively new to the standard. This paper provides some guidelines on the key tasks involved in managing ISO26262 in projects and some ways to approach them. The paper is expected to help managers manage ISO26262 compliant projects especially organizations that have just started their ISO26262 journey.
2017-03-28
Technical Paper
2017-01-1418
Wesley D. Grimes, Thomas Vadnais, Gregory A. Wilcoxson
The time/distance relationship for a heavy truck accelerating from a stop is often needed to accurately assess the events leading up to a collision. Several series of tests were conducted to document the low speed acceleration performance of a 2016 Kenworth T680 truck tractor equipped with an automated manual transmission in Auto Mode. Unlike the tests in previous papers, the driver never manually shifted gears. These tests included three trailer load configurations and two different acceleration rates. Data were gathered with both a VBOX and with the Cummins Insite software. Results from both data acquisition systems were compared.
2017-03-28
Technical Paper
2017-01-1460
Nitesh Jadhav, Linda Zhao, Senthilkumar Mahadevan, Bill Sherwood, Krishnakanth Aekbote, Dilip Bhalsod
The Pelvis-Thorax Side Air Bag (PTSAB) is a typical restraint countermeasure offered for protection of occupants in the vehicle during side impact tests. Currently, the dynamic performance of PTSAB for occupant injury assessment in side impact is limited to full-vehicle evaluation and sled testing, with limited capability in computer aided engineering (CAE). The widely used CAE method for PTSAB is a flat bag with uniform pressure. The flat PTSAB model with uniform pressure has limitations because of its inability to capture airbag deployment during gap closure which results in reduced accuracy while predicting occupant responses. Hence there is a need to develop CAE capability to enhance the accuracy of prediction of occupant responses to meet performance targets in regulatory and public domain side impact tests. This paper describes a new CAE methodology for assessment of PTSAB in side impact.
2017-03-28
Technical Paper
2017-01-1420
Kirsten White, Raymond Merala
Consumers and fleet managers are progressively installing or requiring the use of after-market onboard vehicle cameras, often with GPS capabilities. Some of these Video, Acceleration, and Position (VAP) devices record kinematic data including position, speed, and acceleration. Many consumers also make use of smart phone applications (apps) which provide similar features. As use of “dashcams” becomes more prevalent it follows that the accident reconstructionist may be called to analyze the video and data recorded by the devices. This study characterizes the accuracy and precision of several VAP devices, including a dashcam with GPS which is used by taxi companies nationwide, and several smart phone apps. Tests were performed in which vehicle kinematic data were recorded in a variety of real world conditions simultaneously by the VAP devices, accelerometers, and a proven GPS-based speed sensing and data acquisition system.
2017-03-28
Technical Paper
2017-01-0264
Venkatesh Babu, Ravi Thyagarajan, Jaisankar Ramalingam
In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE),are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system.The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-1354
Timothy Morse, Michael Cundy, Harri Kytomaa
One potential fire ignition source in a motor vehicle is the hot surfaces of the engine exhaust system. These hot surfaces can come into contact with combustible liquids (such as engine oil, transmission fluid, brake fluid, gasoline, or diesel fuel) due to a fluid leak, or during a vehicle collision. If the surface temperature is higher than the hot surface ignition temperature of the combustible liquid in a given geometry, a fire can ignite and potentially propagate. In addition to automotive fluids, another potential fuel in post-collision vehicle fires is grass, leaves, or other vegetation. Studies of hot surface ignition of dried vegetation have found that ignition depends on the type of vegetation, surface temperature, and on the duration of contact. Ignition can occur at surface temperatures as low as 300 °C, if the vegetation is in contact with the surface for 10 minutes or longer.
Viewing 1 to 30 of 17295

Filter