Criteria

Text:
Topic:
Display:

Results

Viewing 241 to 270 of 11129
2016-04-05
Technical Paper
2016-01-1534
Rudolf Reichert, Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan, Daniel Brown
Abstract A detailed finite element model of a 2012 Toyota Camry was developed by reverse engineering. The model consists of 2.25M elements representing the geometry, thicknesses, material characteristics, and connections of relevant structural, suspension, and interior components of the mid-size sedan. This paper describes the level of detail of the simulation model, the validation process, and how it performs in various crash configurations, when compared to full scale test results. Under contract with the National Highway Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA), the Center for Collision Safety and Analysis (CCSA) team at the George Mason University has developed a fleet of vehicle models which has been made publicly available. The updated model presented is the latest finite element vehicle model with a high level of detail using state of the art modeling techniques.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
Abstract In this study, the available metrics to evaluate the crash pulse severity are reviewed and their assessability is investigated by using frontal New Car Assessment Program (NCAP) test data. Linear regression analysis and sled test simulations are conducted. In addition, a new approach is proposed to measure the crash pulse severity and restraint system performance separately and objectively.
2016-04-05
Technical Paper
2016-01-1539
Do Hoi KIm
Abstract Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
2016-04-05
Technical Paper
2016-01-1538
Vaibhav V. Gokhale, Carl Marko, Tanjimul Alam, Prathamesh Chaudhari, Andres Tovar
Abstract This work introduces a new Advanced Layered Composite (ALC) design that redirects impact load through the action of a lattice of 3D printed micro-compliant mechanisms. The first layer directly comes in contact with the impacting body and its function is to prevent an intrusion of the impacting body and uniformly distribute the impact forces over a large area. This layer can be made from fiber woven composites imbibed in the polymer matrix or from metals. The third layer is to serve a purpose of establishing contact between the protective structure and body to be protected. It can be a cushioning material or a hard metal depending on the application. The second layer is a compliant buffer zone (CBZ) which is sandwiched between two other layers and it is responsible for the dampening of most of the impact energy.
2016-04-05
Technical Paper
2016-01-1541
Zuolong Wei, Hamid Reza Karimi, Kjell Gunnar Robbersmyr
Abstract The analysis of the vehicle crash performance is of great meaning in the vehicle design process. Due to the complexity of vehicle structures and uncertainty of crashes, the analysis of vehicle crashworthiness is generally depending on the researchers' experiences. In this paper, different deformation modes of energy absorption components are studied. More specifically, the bumper, crash box, the front longitudinal beam and the engine/firewall have different frequency characteristics in the deformation process. According to these characteristics, it is possible to identify the performance of each component in the crash process of assembled structures. To achieve this goal, the crash response of the passenger cabin is decomposed by the time-frequency transformation. Different frequency components exist mainly in a specified period of the crash process.
2016-04-05
Journal Article
2016-01-1540
Timothy Keon
Abstract The National Highway Traffic Safety Administration has performed research investigating the Test Device for Human Occupant Restraint 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 km/h frontal impact crash. Hybrid III 5th percentile adult female (AF05) anthropomorphic test devices (ATDs) were used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs were positioned in the right front passenger and right rear passenger seating positions. For the right front passenger, the New Car Assessment Procedure (NCAP) seating procedure was used, except the seat fore-aft position was set to mid-track. For the right rear passenger, the seating followed the FMVSS No. 214 Side Impact Compliance Test Procedure. The NCAP frontal impact test procedure was followed with additional vehicle instrumentation and pre/post-test measurements.
2016-04-05
Technical Paper
2016-01-1524
Feng Zhu, Binhui Jiang, Clifford C. Chou
Abstract This paper represents the development of a new design methodology based on data mining theory for decision making in vehicle crashworthy components (or parts) development. The new methodology allows exploring the big crash simulation dataset to discover the underlying complicated relationships between vehicle crash responses and design variables at multi-levels, and deriving design rules based on the whole vehicle safety requirements to make decisions towards the component and sub-component level design. The method to be developed will resolve the issue of existing design approaches for vehicle crashworthiness, i.e. limited information exploring capability from big datasets, which may hamper the decision making and lead to a nonoptimal design. A preliminary design case study is presented to demonstrate the performance of the new method. This method will have direct impacts on improving vehicle safety design and can readily be applied to other complex systems.
2016-04-05
Technical Paper
2016-01-1525
Anil Kalra, Kartik Somasundram, Ming Shen, Vishal Gupta, Clifford C. Chou, Feng Zhu
Abstract Numerical models of Hybrid III had been widely used to study the effect of underbody blast loading on lower extremities. These models had been primarily validated for automotive loading conditions of shorter magnitude in longer time span which are different than typical blast loading conditions of higher magnitude of shorter duration. Therefore, additional strain rate dependent material models were used to validate lower extremity of LSTC Hybrid III model for such loading conditions. Current study focuses on analyzing the mitigating effect of combat boots in injury responses with the help of validated LSTC Hybrid III model. Numerical simulations were run for various impactor speeds using validated LSTC Hybrid III model without any boot (bare foot) and with combat boot.
2016-04-05
Technical Paper
2016-01-1527
Paul Podzikowski, Suk Jae Ham, John Cadwell, Aviral Shrivatri
Abstract The introduction of a revised New Car Assessment Program (NCAP) frontal crash test in the US has been challenging due to more stringent Anthropomorphic Test Device (ATD) rating metrics such as neck injury (Nij). These ATD responses in full vehicle tests may be under-predicted with conventional linear sleds because they are not capable of reproducing the pitching effect seen in some vehicle tests. The primary objective of this study was to confirm the effects of pitching sled on front passenger 5th %ile female ATD Nij response by comparing prototype vehicle test to pitching sled and linear sled tests. A second objective was to confirm that newly introduced pitching sled with enhanced pitching capability was able to reproduce similar vehicle kinematics when compared to a baseline vehicle test.
2016-04-05
Technical Paper
2016-01-1528
Peijun Ji, Qing Zhou
Abstract As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
2016-04-05
Technical Paper
2016-01-1529
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou, Malhar Kumar
Abstract Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
2016-04-05
Technical Paper
2016-01-1532
Kyoungtaek Kwak, Seungwoo Seo, Randi Potekin, Antoine Blanchard, Alexander Vakakis, Donald McFarland, Lawrence Bergman
Abstract The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
2016-04-05
Technical Paper
2016-01-1530
Yury Chudnovsky, Justin Stocks-Smith, Jeya Padmanaban, Joe Marsh
Abstract NASS/CDS data (1993-2013) was used to examine serious injury rates and injury sources for belted drivers in near- and far-side impacts. Frequency and severity of near- and far-side impacts by crash severity (delta-V) were compared for older (1994-2007 MY) and newer (2008-2013 MY) vehicles. For 2008-2013 MY, individual cases were examined for serious thorax injury in far-side impacts. Results show that, for newer passenger cars, about 92% of side impacts have a delta-V under 15 mph and, for older cars, the percentage is about 86%. The rate of serious injury is higher for nearside compared to far-side crashes for both older and newer models, and the near-side injury rate is much lower for newer models. Safety features, including side airbags, are effective in reducing injuries to near-side belted drivers in newer models. The serious injury rate for near-side belted drivers in older cars is 5.5% for near-side crashes and 1.2% for far-side crashes.
2016-04-05
Technical Paper
2016-01-1514
Varun Bollapragada, Taewung Kim, Mark Clauser, Jeff Crandall, Jason Kerrigan
Abstract Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
2016-04-05
Technical Paper
2016-01-1516
Takahiro Suzaki, Noritaka Takagi, Kosho Kawahara, Tsuyoshi Yasuki
Abstract Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
2016-04-05
Technical Paper
2016-01-1517
Cole R. Young, David J. King, James V. Bertoch
Abstract The purpose of this study was to characterize the kinematics of four Chevrolet Tracker rollover tests and to determine their average and intermediate deceleration rates while traveling on concrete and dirt. Single vehicle rollover tests were performed using four 2001 Chevrolet Trackers fitted with six degree of freedom kinematic sensors. Tests were conducted using a rollover test device (RTD) in accordance with SAE J2114. The test dolly was modified (resting height of the vehicle wheels was raised) between tests 1, 2, and 3. The RTD was accelerated to 15.6 m/s (35 mph) and then decelerated rapidly by an energy absorbing crash cushion (EA) to cause the vehicle to launch and roll. The vehicles initially rolled on a smooth concrete surface and continued into loose dirt. This paper adds to the body of work identifying phases of constant deceleration during staged RTD tests and compares these phases to the overall deceleration rate.
2016-04-05
Technical Paper
2016-01-1518
Carolyn W. Roberts, Jacek Toczyski, Jack Cochran, Qi Zhang, Patrick Foltz, Bronislaw Gepner, Jason Kerrigan, Mark Clauser
Abstract Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1521
Masaaki Kuwahara, Tsuyoshi Yasuki, Takeki Tanoue, Ryosuke Chikazawa
Abstract This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
2016-04-05
Technical Paper
2016-01-1522
Zhenwen Wang, Brock Watson
Abstract A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-1612
Francesco Mariani, Francesco Risi, Nicola Bartolini, Francesco Castellani, Lorenzo Scappaticci
Abstract Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
2016-04-05
Technical Paper
2016-01-1604
Anton Kabanovs, Max Varney, Andrew Garmory, Martin Passmore, Adrian Gaylard
Abstract This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
2016-04-05
Technical Paper
2016-01-1396
Kai Liu, ZongYing Xu, Duane Detwiler, Andres Tovar
Abstract This work proposes a new method to design crashworthiness structures that made of functionally graded cellular (porous) material. The proposed method consists of three stages: The first stage is to generate a conceptual design using a topology optimization algorithm so that a variable density is distributed within the structure minimizing its compliance. The second stage is to cluster the variable density using a machine-learning algorithm to reduce the dimension of the design space. The third stage is to maximize structural crashworthiness indicators (e.g., internal energy absorption) and minimize mass using a metamodel-based multi-objective genetic algorithm. The final structure is synthesized by optimally selecting cellular material phases from a predefined material library. In this work, the Hashin-Shtrikman bounds are derived for the two-phase cellular material, and the structure performances are compared to the optimized structures derived by our proposed framework.
2016-04-05
Journal Article
2016-01-1409
J. Christopher Watson, Gennady Dumnov, Alexander Muslaev, Andrey Ivanov, Svetlana Shtilkind
Abstract Condensation occurrence in automotive headlights can be detrimental to consumer acceptance of a product. This paper describes a technique for transient numerical simulation of liquid film formation on surfaces during lighting thermal analysis performed using Computational Fluid Dynamics (CFD), including how the film’s properties influence the thermal solution. The numerical technique presented accounts for the change in the film thermal state and thickness due to heat exchange with external fluid flow and solid bodies, surface evaporation/condensation, melting/crystallization within the film volume, and its motion due to gravity and friction forces from the surrounding airflow. Additionally, accurate modeling of radiation effects is critical for lighting applications, including the attendant influence on the thermal distribution of the solids that may have surfaces subject to condensation.
2016-04-05
Technical Paper
2016-01-1403
Jeff D. Colwell, Christopher D. Henry
Abstract Data from a full-scale vehicle burn test involving a cargo van illustrated how temperature distributions changed over time, the manner in which fire spread, and how patterns produced correlated to the origin of the fire. The fire was initiated on the driver’s side of the engine compartment and initially grew slowly with the high-temperature zone near the area of origin. Once the peak temperature reached about 540°C, the rate of flame spread increased such that over the next 4 minutes the fire spread across the entire engine compartment. In the next stage of the fire, which occurred shortly after full involvement of the engine compartment, the fire spread into the passenger compartment. A strong vertical temperature gradient developed from the ceiling to the floor and as the passenger compartment became fully involved, the passenger compartment temperatures both increased and became more uniform.
2016-04-05
Journal Article
2016-01-1402
Lora L. Spangler, Jeffrey Hurlbut, Daniel Cashen, Emily Robb, Jim Eckhart
Abstract Head-up display (HUD) technology creates inherent driver safety advantages by displaying critical information directly in the driver’s line of sight, reducing eyes off road and accommodation time. This is accomplished using a system of relay optics and windshield reflection to generate a virtual image that appears to hover over the hood near the bumper. The windshield is an integral optical component of the HUD system, but unfortunately the windshield-air interface causes a double image ghost effect as a result of refractive index change, reducing HUD image clarity. Current technology uses a constant angle wedged PVB windshield interlayer to eliminate double image at a single driver height. However, the HUD double image persists for all other viewing locations. Eastman Chemical Company has developed a new interlayer technology which eliminates the double image at all driver locations by tuning the wedge angle as a function of driver occupant seated height.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Journal Article
2016-01-1414
Shigeyoshi Hiratsuka, Shinichi Kojima, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
2016-04-05
Technical Paper
2016-01-1412
Takeshi Hamaguchi, Satoshi Inoue, Shigeyuki Kimura, Terumasa Endo
Abstract In driver-focused vehicle development, driver workload is generally evaluated subjectively, with physiological, psychological, and behavioral indexes used to quantify and substantiate the subjective rating. In contrast, a model of driver behavior expresses the driver’s behavioral characteristics which make it possible to estimate how the driver will incorporate information into vehicle operation. Therefore, it is presumed to be capable of estimating the internal state of a driver. Conventionally, a model of driver behavior related to pedal operation has been used for evaluating the driver’s habits and the acceptability of various types of support devices. However, it has not been used for estimating driver workload related to pedal operation. To examine driver workload, this study divided pedal operation magnitude into two components: a learning/judgment component and a correcting component for prediction errors. A method was devised of separating these two components.
Viewing 241 to 270 of 11129