Criteria

Text:
Topic:
Display:

Results

Viewing 211 to 240 of 11124
2016-09-27
Journal Article
2016-01-8098
Satish Jaju, Sahil Pandare
Abstract The regulatory requirement in Economic Commission for Europe (ECE R58) regulation applies to the Rear underrun protection devices which are intended to be fitted to commercial vehicles of N categories. The purpose of this regulation is to offer effective protection against underrunning of vehicles. This paper describes Computer aided engineering (CAE) methodology for testing rear underrun protection devices with loading sequences to be decided by Original equipment manufacturer. A sample model is prepared and analyzed to represent actual test conditions. Constraints and boundary conditions are applied as per test of vehicle. Finite element simulation is carried out using LS DYNA solver. Structural strength and integrity of Rear under protection device assembly is observed for different regulatory load requirement.
2016-09-27
Technical Paper
2016-01-8049
Keith Friedman, Khanh Bui, John Hutchinson, Matthew Stephens, Francisco Gonzalez
Abstract Frame rail design advances for the heavy truck industry provide numerous opportunities for enhanced protection of fuel storage systems. One aspect of the advanced frame technology now available is the ability to vary the frame rail separation along the length of the truck, as well as the depth of the frame. In this study, the effect of incorporating the fuel storage system within advanced technology tapered frame rails was evaluated using virtual testing under impact conditions. The impact performance was evaluated under a range of horizontal impacts conditions. The performance observed was quantified and then compared with previous testing of baseline diesel tank systems. Fuel storage system impact performance metrics over the range of crash conditions considered were quantified using virtual testing methods. The results obtained from the application of the impact performance evaluation methodology were then described.
2016-09-20
Technical Paper
2016-01-2025
Amir Fazeli, Adnan Cepic, Susanne Reber
Abstract Aircraft weight and center of mass are two critical design and operational parameters that have to be within a design envelope to ensure a safe and efficient operation of aircraft. Previous efforts to accurately determine aircraft weight and center of mass before takeoff using landing gear shock strut pressures have failed due to the distortion of measured pressures by shock strut seal friction. Currently, aircraft loading process is controlled with loading sheets and passenger/cargo weight estimation as there are no online measurement systems that can accurately and efficiently estimate aircraft weight and determine the center of mass location before takeoff. However, errors in loading sheets, shifting cargo and errors in weight estimation could lead to incorrect loading of aircraft and, consequently, increase the risk of accidents, particularly in cargo flights.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Technical Paper
2016-01-1999
Debabrata Pal, Frank Feng
Abstract In 3-phase AC application, there is additional heat dissipation due to skin effects and proximity effects in bus bars. In addition, when the 3- phase AC is used to drive a motor at high fundamental frequency, for example between 666 Hz and 1450 Hz, there are higher bus bar losses due to presence of higher frequency harmonic content. High frequency current carrying bus bars in aircraft power panels are typically cooled by natural convection and radiation. In this paper a thermal and electrical finite element analysis (FEA) is done for a bus bar system. For electrical loss modeling, 3D electromagnetic FEA is used to characterize losses in three parallel bus bars carrying AC at various frequencies. This loss analysis provides correlation of heat loss as function of frequency. A method is presented where this AC loss is incorporated using computational fluid dynamics (CFD) based thermal model.
2016-09-20
Technical Paper
2016-01-2043
Richard C. Millar, Thomas Mazzuchi, Haflidi Jonsson
Abstract The SPA-10 project, sponsored by U.S. National Science Foundation, is to acquire and qualify a replacement for the retired T-28 “storm penetration” aircraft previously used to acquire meteorological data to enable understanding and modelling of mid-continent thunderstorms. The National Science Foundation selected the Fairchild A-10 (bailed from the U.S. Air Force) as the platform to be adapted to perform the storm penetration mission to altitudes of eleven kilometers, and funded Naval Postgraduate School’s Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) as prime contractor. An expert panel conducted a review of the SPA-10 project in 2014 and recommended a risk analysis addressing hazards to the aircraft and pilots, such as icing, hail, turbulence and lightning. This paper presents the results of the risk analysis performed in response to this need, including recommended mitigations.
2016-09-20
Technical Paper
2016-01-2040
Satya Swaroop Panda, Uday Kishore Tammiraju
Abstract Most of the real world problems pose practical challenges for making decisions primarily due to availability of limited data. Quantification of risk and assessment of structural reliability becomes difficult in such scenarios. Techniques for performing safety analysis for such problems are discussed in this paper. While complete characterization of a system behavior may be difficult with limited data of its response, statistical models based on extreme value theory provide the basis for making decisions with reasonable confidence. The same may not be true, however, for such structures early in their design cycle due to limited experience of their performance. In such cases response surface methodology can be very useful in determination of risk and suitably making modifications to the design to improve the reliability of the component or system. Applications of these methods for some real world scenarios are demonstrated.
2016-09-20
Technical Paper
2016-01-1991
Syed J. Khalid
Abstract Aircraft subsystems essential for flight safety and airworthiness, including flight controls, environmental control system (ECS), anti-icing, electricity generation, and starting, require engine bleed and power extraction. Predictions of the resulting impacts on maximum altitude net thrust(>8%), range, and fuel burn, and quantification of turbofan performance sensitivities with compressor bleed, and with both high pressure(HP) rotor power extraction and low pressure(LP) rotor power extraction were obtained from simulation. These sensitivities indicated the judicious extraction options which would result in the least impact. The “No Bleed” system in Boeing 787 was a major step forward toward More Electric Aircraft (MEA) and analysis in this paper substantiates the claimed benefits.
2016-09-18
Technical Paper
2016-01-1953
Michael Herbert Putz, Harald Seifert, Maximilian Zach, Jure Peternel
Abstract Since more than eight years Vienna Engineering (VE) is working on an electro-mechanical brake (EMB) actuated by eccentrics and a highly non-linear actuation mechanism. The principle allows full braking in approx. 70 milliseconds (including air gap) and only approx. 3 A RMS actuator current at 12 V for classical ABS with oscillations. This EMB reached an elaborated state. Versions for passenger cars, elevators, railway and commercial vehicles (CVs) were derived. Now, as the EMB is going to road tests, it is necessary to fulfill safety requirements closely. What are these safety requirements and how can they be fulfilled? The properties of the overall system, of the mechanics and electronics of the single brake are discussed in this paper. The overall brake system for EMBs needs a truly redundant power supply, a safe control bus and a safe brake pedal. The mechanics of a single brake can be required to release when power is off and it must not get mechanically stuck.
2016-09-16
Journal Article
2016-01-9017
Janka Cafolla, Derick Smart, Barry Warner
Abstract The lifting and excavating industry are not as advanced as automotive in the use of modern CAE tools in the early stages of design and development of heavy machinery. There is still a lack of confidence in the integrity of the results from FE simulations and optimisation and this becomes a barrier to the adoption of virtual prototyping for vehicle verification. R&D of Tata Steel has performed tests on two forklift truck overhead guards supplied by a major manufacturer. Based on the international standard for Falling Object Protective Structures (FOPS) as an initial input to the method of testing, the main aim of this study was to generate as much test data as possible to correlate the Finite Element (FE) simulations of two tests - a static and a dynamic test. The static test was developed to deform the overhead guard plastically in a slow controlled manner, so it would be easier to correlate the measured data to FE simulation.
2016-09-14
Journal Article
2016-01-1877
Jun Hu, Wei Liu, Shuai Cheng, Huan Tian, Huai Yuan, Hong Zhao
Abstract The convolutional neural network (CNN) has achieved extraordinary performance in image classification. However, the implementation of such architecture on embedded platforms is a big challenge task due to the computing resource constraint issue. This paper concentrates on optimization of CNN on embedded platforms with a case study of pedestrian detection in ADAS. The main contribution of this proposed CNN is its ability to run pedestrian classification task in real time with high accuracy based on a platform with ARM embedded. The CNN model has been trained with GPU locally and then transformed into an efficient implementation on embedded platforms. The efficient implementation uses dramatically small network scale and a lightweight CNN is obtained. Specifically, parameters of the network are compressed by adopting integer weights to reduce computational complexity. Meanwhile, other optimizations have also been proposed to adapt the general ARM processor architecture.
2016-06-15
Technical Paper
2016-01-1839
Emar Vegt
Abstract The quiet nature of hybrid and electric vehicles has triggered developments in research, vehicle manufacturing and legal requirements. Currently, three countries require fitting an Approaching Vehicle Alerting System (AVAS) to every new car capable of driving without a combustion engine. Various other geographical areas and groups are in the process of specifying new legal requirements. In this paper, the design challenges in the on-going process of designing the sound for quiet cars are discussed. A proposal is issued on how to achieve the optimum combination of safety, environmental noise, subjective sound character and technical realisation in an iterative sound design process. The proposed sound consists of two layers: the first layer contains tonal components with their pitch rising along with vehicle speed in order to ensure recognisability and an indication of speed.
2016-06-15
Journal Article
2016-01-1784
Alessandro Fortino, Lutz Eckstein, Jens Viehöfer, Jürgen Pampel
Abstract Vehicles powered by electric machines offer the advantage to be more silent than vehicles equipped with an internal combustion engine. On the one hand, the reduced noise levels enable an improvement of the inner-city noise pollution. On the other hand, quiet vehicles entail risks not to be acoustically detected by surrounding pedestrians and cyclists in the lower speed range. The emitted noise can easily be masked by the urban background noise. Therefore, the UNECE has founded an informal working group which is currently developing guidelines in terms of an exterior noise required for detecting Quiet Road Transport Vehicles (QRTV). With the introduction of an Acoustic Vehicle Alerting System (AVAS), not only the exterior noise but also the perceived interior noise for an enhanced driving experience can be considered. Nevertheless, car manufactures have a big interest in maintaining their perceived brand identity.
2016-04-15
Journal Article
2015-01-9020
Emre Sert, Pinar Boyraz
Abstract Studies have shown that the number of road accidents caused by rollover both in Europe and in Turkey is increasing [1]. Therefore, rollover related accidents became the new target of the studies in the field of vehicle dynamics research aiming for both active and passive safety systems. This paper presents a method for optimizing the rear suspension geometry using design of experiment and multibody simulation in order to reduce the risk of rollover. One of the major differences of this study from previous work is that it includes statistical Taguchi method in order to increase the safety margin. Other difference of this study from literature is that it includes all design tools such as model validation, optimization and full vehicle handling and ride comfort tests. Rollover angle of the vehicle was selected as the cost function in the optimization algorithm that also contains roll stiffness and height of the roll center.
2016-04-12
Technical Paper
2016-01-7000
Daniel P. Malone, John F. Creamer
In 1966, Congress boldly reshaped the American approach to road safety and thereby established the United States as the worldwide leader in vehicle safety. Congressional action led to the establishment of the Department of Transportation, the National Highway Traffic Safety Administration (NHTSA), Federal Motor Vehicle Safety Standards, and the motor-vehicle safety defects and recall system. However, the safety environment that gave rise to these responses has evolved substantially. Fifty years later, the United States is unable to properly regulate rapidly advancing safety technologies, and the recall system is wholly unsuited to ensuring the safety of software-driven systems. Congress must act to update the road safety system in order to enable the United States to meet the challenges and seize the opportunities of the new transportation era.
2016-04-05
Technical Paper
2016-01-0538
Cynthia Templeman
Abstract Automotive clearcoats have many purposes, from providing a glossy finish to protecting the underlying paint layers from UV radiation. Yellowing of clearcoats is a natural phenomenon during weathering processes, as well as from extreme baking conditions, due to polymer degradation. However, occasionally yellowing may be caused by unexpected chemical reactions occurring in the clearcoat. These reactions may happen very quickly (within hours or days) or take years to manifest, as other chemicals migrate into the clearcoat. We have investigated one family of these unexpected reactions which occur with certain UV absorbers, as well as how to prevent the reactions from occurring. We found that certain benzotriazole UV absorbers react readily with some common metals, including copper and zinc, provided that the UV absorber is not in its excited state.
2016-04-05
Technical Paper
2016-01-1538
Vaibhav V. Gokhale, Carl Marko, Tanjimul Alam, Prathamesh Chaudhari, Andres Tovar
Abstract This work introduces a new Advanced Layered Composite (ALC) design that redirects impact load through the action of a lattice of 3D printed micro-compliant mechanisms. The first layer directly comes in contact with the impacting body and its function is to prevent an intrusion of the impacting body and uniformly distribute the impact forces over a large area. This layer can be made from fiber woven composites imbibed in the polymer matrix or from metals. The third layer is to serve a purpose of establishing contact between the protective structure and body to be protected. It can be a cushioning material or a hard metal depending on the application. The second layer is a compliant buffer zone (CBZ) which is sandwiched between two other layers and it is responsible for the dampening of most of the impact energy.
2016-04-05
Journal Article
2016-01-1540
Timothy Keon
Abstract The National Highway Traffic Safety Administration has performed research investigating the Test Device for Human Occupant Restraint 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 km/h frontal impact crash. Hybrid III 5th percentile adult female (AF05) anthropomorphic test devices (ATDs) were used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs were positioned in the right front passenger and right rear passenger seating positions. For the right front passenger, the New Car Assessment Procedure (NCAP) seating procedure was used, except the seat fore-aft position was set to mid-track. For the right rear passenger, the seating followed the FMVSS No. 214 Side Impact Compliance Test Procedure. The NCAP frontal impact test procedure was followed with additional vehicle instrumentation and pre/post-test measurements.
2016-04-05
Technical Paper
2016-01-1541
Zuolong Wei, Hamid Reza Karimi, Kjell Gunnar Robbersmyr
Abstract The analysis of the vehicle crash performance is of great meaning in the vehicle design process. Due to the complexity of vehicle structures and uncertainty of crashes, the analysis of vehicle crashworthiness is generally depending on the researchers' experiences. In this paper, different deformation modes of energy absorption components are studied. More specifically, the bumper, crash box, the front longitudinal beam and the engine/firewall have different frequency characteristics in the deformation process. According to these characteristics, it is possible to identify the performance of each component in the crash process of assembled structures. To achieve this goal, the crash response of the passenger cabin is decomposed by the time-frequency transformation. Different frequency components exist mainly in a specified period of the crash process.
2016-04-05
Technical Paper
2016-01-1420
Shinichi Kojima, Shigeyoshi Hiratsuka, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
2016-04-05
Technical Paper
2016-01-1417
Toshinao Fukui, Kazuhiko Nakamoto, Hiroyuki Satake
Abstract The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
2016-04-05
Technical Paper
2016-01-1424
Yi G. Glaser, Robert E. Llaneras, Daniel S. Glaser, Charles A. Green
Abstract Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
2016-04-05
Technical Paper
2016-01-1437
Giorgio Previati, Massimiliano Gobbi, Giampiero Mastinu
Abstract The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
2016-04-05
Journal Article
2016-01-1439
Nazan Aksan, Lauren Sager, Sarah Hacker, Robert Marini, Jeffrey Dawson, Steven Anderson, Matthew Rizzo
Abstract We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver’s line-of-sight. A sustained auditory tone (∼80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Technical Paper
2016-01-1451
Mingyang Chen, Xichan Zhu, Zhixiong Ma, Lin Li
Abstract In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
2016-04-05
Technical Paper
2016-01-1452
Eiichiro Murata, Tasuku Usui, Kazunori Nogi, Hiroyuki Takahashi
Abstract In order to help avoid or mitigate rear-end collisions a Pre-Collision System (PCS) was developed. The purpose of this study is to clarify the Time-to-Collision (TTC) distribution when approaching a lead vehicle under normal driving condition. To enhance the effectiveness of PCS, warnings and/or automatic brake activation should happen as early as possible, however, if too early there is a high possibility of false warnings or activations, which is not desirable. If the distribution of distance to a lead vehicle under normal driving conditions is quantified, an approach limit can be estimated. In this study, we try to clarify a TTC distribution that is approximated by a log-normal distribution. Then, we investigate the Enhanced Time-to-Collision (ETTC) that is the secondary predictive value of TTC. And, we clarify the log-normal distribution of ETTC is a more stable approximator of normal driving than a log-normal distribution of TTC.
2016-04-05
Technical Paper
2016-01-1453
I-Hsuan Lee, Bi-Cheng Luan
Abstract Autonomous emergency braking (AEB) systems is one of the functions of the Advanced Driver Assists System to avoid or mitigate vehicle frontal collisions. Most of the previous studies focus on two-car scenario where the host vehicle monitors the distances to the vehicles in front, and automatically applies emergency brake when a collision is imminent. The purpose of this paper is to develop an Advanced-AEB control system that mitigates collisions in a multi-car scenario by measuring the distances to the vehicles in front as well as those to the vehicles behind using the concept of impedance control. A simple gain-scheduling PI controller was designed for the host vehicle to track the reference inputs generated by the impedance control. The preliminary simulation results demonstrate that the proposed AEB is effective in mitigating the collisions in a 3-car following scenario.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
Viewing 211 to 240 of 11124