Criteria

Text:
Topic:
Display:

Results

Viewing 121 to 150 of 11100
2017-03-28
Journal Article
2017-01-0268
Venkatesh Babu, Richard Gerth
Abstract The aim of this analysis was to model the effect of adding stiffening ribs in structural aluminum components by friction stir processing (FSP) Nano material into the aluminum matrix. These stiffening ribs could dampen, redirect, or otherwise alter the transmission of energy waves created from automotive, ballistic, or blast shocks to improve noise, vibration, and harshness (NVH) and structural integrity (reduced joint stress) response. Since the ribs are not created by geometry changes they can be space efficient and deflect blast / ballistic energy better than geometry ribbing, resulting in a lighter weight solution. The blast and ballistic performance of different FSP rib patterns in AL 5182 and AL 7075 were simulated and compared to the performance of an equivalent weight of RHA plate FSP helps to increase localized strength and stiffness of the base metal, while achieving light weighting of the base metal.
2017-03-28
Technical Paper
2017-01-0361
Amar Marpu, George Garfinkel, Patrick Maguire
Abstract Modeling of High Voltage (HV) wires is an important aspect of vehicle safety simulations for electrified powertrains to understand the potential tearing of the wire sheath or pinching of HV wiring. The behavior of the HV wires must be reviewed in safety simulations to identify potential hazards associated with HV wire being exposed, severed, or in contact with ground planes during a crash event. Modeling HV wire is challenging due to the complexity of the physical composition of the wire, which is usually comprised of multiple strands bundled and often twisted together to form the HV electrical conductor. This is further complicated by the existence of external insulating sheathing materials to prevent HV exposure during normal operating conditions. This paper describes a proposed method to model and characterize different types of HV wires for usage in component- and vehicle-level safety models.
2017-03-28
Technical Paper
2017-01-0363
Karthik Ramaswamy, Vinay L. Virupaksha, Jeanne Polan, Biswajit Tripathy
Abstract Expanded Polypropylene (EPP) foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles is predominantly driven by Computer Aided Engineering (CAE). This makes it necessary to have a validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and its effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties.
2017-03-28
Technical Paper
2017-01-0377
Peter Shery, William Altenhof, Ryan Smith, Elmar Beeh, Philipp Strassburger, Thomas Gruenheid
Abstract Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
2017-03-28
Technical Paper
2017-01-0373
Fabian Jorg Uwe Koark, Christian Beul
Abstract Achieving functional safety in mechatronic systems with growing product functionality is a major challenge in systems engineering. Following the current discussion, this challenge is mostly allocated to electronics and software development. For most of the scenarios this focus is feasible. Product design - the construction of the product - defines the properties and the appearance of the product by shape, material and assembly. So, the product design is often not under control of the safety management system. A hazardous deviation of part shape can be easily identified after the parts product or at least at its mounting. A wrong assembly is controlled by assembly documentation or data (e.g. screw torques) and identified at end of assembly line checks. The identification of a hazardous material choice depends on the product material class. Product materials can be separated into two classes: passive or active materials.
2017-03-28
Technical Paper
2017-01-0476
Seiji Furusako, Masatoshi Tokunaga, Masanori Yasuyama
Abstract To reduce the weight of automobile bodies, application of high-strength steel sheets is expanding. Furthermore, middle and high carbon steels are expected to be used to lower the environmental impact and cost in the automobile steel sheet industry. However, it is necessary to enhance the joint strength of the steel sheets. In this study, hat-shaped components were made using resistance spot (RS) welding or arc spot (AS) welding on S45C steel sheets (including 0.44% carbon), 1.4 mm thickness and strength of 1180 MPa grade. A dynamic three-point bending test was conducted on the components and their crashworthiness was compared. Some RS welds fractured (separated) during the three-point bending test even though the diameter of the weld metal was increased to 5√t (t means thickness of the sheet); however, AS welds did not fracture.
2017-03-28
Technical Paper
2017-01-1439
John C. Steiner, Christopher Armstrong, Tyler Kress, Tom Walli, Ralph J. Gallagher, Justin Ngo, Andres Silva
Abstract The use of the United States’ Global Positioning System (GPS) to assist with the management of large commercial fleets using telematics is becoming commonplace. Telematics generally refers to the use of wireless devices to transmit data in real time back to an organization. When tied to the GPS system telematics can be used to track fleet vehicle movements, and other parameters. GPS tracking can assist in developing more efficient and safe operations by refining and streamlining routing and operations. GPS based fleet telematics data is also useful for reducing unnecessary engine idle times and minimizing fuel consumption. Driver performance and policy adherence can be monitored, for example by transmitting data regarding seatbelt usage when there is vehicle movement. Despite the advantages for fleet management, there are limitations in the logged data for position and speed that may affect the utility of the system for analysis and reconstruction of traffic collisions.
2017-03-14
Technical Paper
2017-01-9750
Shawn Harrington, Joseph Teitelman, Erica Rummel, Brendan Morse, Peter Chen, Donald Eisentraut, Daniel McDonough
Abstract With the prevalence of satellite imagery in the analysis of collision events growing in the field of accident reconstruction, this research aims to quantify, refine, and compare the accuracies of measurements obtained utilizing conventional instruments to the measurements obtained using Google Earth Pro software. Researchers documented and obtained 1305 unique measurements from 68 locations in 25 states and provinces in the United States, Canada, and Australia using measuring wheels and tape measures. Measurements of relevant features at each location (crosswalks, curved roadways, off-road features, etc.) were documented and subdivided into three groups: On-Road, Off-Road, and Curved Path measurements. These measurements were compared to the measurements obtained of the same features from current and historical satellite imagery within Google Earth Pro.
2017-01-10
Technical Paper
2017-26-0003
Chandrashekhar Thorbole
Abstract The seatbelt is the primary restraint device that increases the level of occupant protection in a frontal crash. The belt performance is enhanced by the supplemental restraint provided by the airbag; seat and knee bolster working in combination with this primary restraining device. Small occupants are vulnerable to upper neck injuries when seated very close to the steering wheel. A lot of research and data availability for this situation ultimately led to the development of countermeasures capable of reducing upper neck loading. However, no data or research is available on the lower neck dynamic response of a small occupant primarily a 5th percentile female seated away from the steering wheel. MADYMO (Mathematical Dynamic Modeling), a biodynamic code is employed to validate a standard NHTSA (National Highway Traffic Safety Administration) frontal impact rigid barrier test with a 5th percentile ATD (Anthropomorphic Test Device) in the driver position.
2017-01-10
Technical Paper
2017-26-0001
Kuldeep Singh, Anoop Chawla, Sudipto Mukherjee, Pradeep Agrawal
Abstract The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
2017-01-10
Technical Paper
2017-26-0002
Sitikantha Padhy, Pradeep Agrawal, Yoginder Yadav
Abstract Most of the time in motor vehicle accidents, the driver of the vehicle (especially driver of the larger vehicle in case of collision involving multiple vehicles) is held responsible for rash and negligent driving. But in-depth study and statistics, points out several external or environmental factors playing crucial role in these unfortunate incidents. In some cases these factors directly influence an accident/crash and in some cases these factors influence the behavior pattern of the driver, which increases risk of unsafe practices. Based on the real time data collected by ADAC on the Gurgaon - Jaipur Stretch of NH-8 and others parts of India, some of the factors that directly or indirectly influences the drivers behaviour, are illustrated in this paper.
2017-01-10
Technical Paper
2017-26-0017
Celine Adalian, Alba Fornells, Núria Parera
Abstract In the 70’s, to reduce vehicle crash fatalities, NHTSA launched a Program, called NCAP, to compare the safety of cars. This Program was copied in Europe and around the world. It has been demonstrated that this kind of public assessment has forced OEM’s to invest in safety and to develop safer vehicles. Nowadays, NCAPs exist for nearly all regions around the world; all of them with the aim of improving vehicle safety. They apply the philosophy of an “overall rating”. In that way the information aims to be clearer and more general and will help to compare cars. Nevertheless, even though in every NCAP the overall assessment is given by a unique star rating, the specifications and requirements in each protocol are different. Each NCAP has been adapted to each region’s conditions, accidentology and traffic and therefore assessment criteria have their own peculiarities.
2017-01-10
Technical Paper
2017-26-0013
Frank Keck, Marco Alt, Arne Vater, Joseph Wessner
Abstract Current driver assistance systems or forward-looking safety systems mainly address traffic scenarios with cars travelling in the same direction or being stopped. These scenarios are - considered from a dynamical point of view - comparatively easy to handle due to the limitations of the relevant scenario parameters (relative velocity, possible accelerations, …). In the future it will be necessary to address oncoming traffic scenarios as well. These oncoming scenarios are responsible for a lot of critical accidents and the potential benefit is very high if one is able to reduce the crash severity in these scenarios. The problem remains that these scenarios are highly dynamical and therefore difficult to evaluate and handle. The following questions are of interest: How should a system be designed to be able to handle these situations? What are the critical scenarios which define the performance of the whole system? What are the limitations which cannot be overcome?
2017-01-10
Technical Paper
2017-26-0012
S Lakshmi Narayanan, Suresh Palraj, Madanagopal Mani, Shekhar Pathak
Abstract This paper makes an attempt to focus on a study to evaluate angle of vision and obstruction in a vehicle, it is an objective assessment through different percentiles of population. In a view of Safety and comfort of a driver, a good perception of environment in which his vehicle is operating will be a determining component. Driver visibility and hidden corner in vehicle is a major safety area for passengers and pedestrian. Driver eye vision is an important key factor to design vehicle windshield, rear window and A-Pillar/ B-Pillar, positioning of side view mirror and IRVM based on anthropometry data. This study focuses on method of capturing and measuring the i) Driver's Direct field of vision that the driver sees directly by moving his/her eyesii) Driver's Indirect field of vision in which driver views indirectly by using imaging devices Rear View mirror, Display cameras.iii) Driver's Angle of obstruction - by A pillar, B pillar.
2017-01-10
Technical Paper
2017-26-0010
Alba Fornells, Núria Parera
Abstract Over recent decades climate change and air pollution have become an increasingly important issue and so the transportation policies of many countries aim to make vehicles more efficient and promote the development and use of electric vehicles. According to the European Automotive Manufacturers Association, the registration of electric vehicles showed a substantial increase of 160.5%, that makes stakeholders assume a realistic market share for new electrically chargeable vehicles to be in the range of 2 to 8% by 2020 to 2025, based on today’s market. Electric and hybrid vehicles are submitted to the same passive and active safety standards as fossil fuel engine vehicles and so they have to pass crash tests defined by homologation regulations or other consumer standards such as Euro NCAP.
2017-01-10
Technical Paper
2017-26-0009
Abhinab Mohanty, Rajasekar Ramaraj, Prashant Dhage, Alok Kumar Ray
Abstract Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
2017-01-10
Technical Paper
2017-26-0007
Siva Murugesan, Vishakha S Bhagat, B V Shamsundara, Abhay Mannikar
Abstract In year 2015, 17 people were killed every hour by road accidents in India [1]. The occurrence of road accidents is observed to be higher during night, when visibility is at its lowest. The two factors which affect visibility are insufficient illumination and glare caused by the oncoming traffic. The Adaptive Front Lighting System [AFS] is an active safety feature which addresses these problems by employing specific lighting modes for Town, Country, Expressway conditions and automatic switching between Driving Beam and Passing Beam whenever required. Matrix of LEDs or a Projector with an actuator or a combination of both is employed in achieving different Lighting modes. The projector based AFS module is preferred for implementing the AFS control logic for passing beam owing to its economic cost.
2017-01-10
Technical Paper
2017-26-0023
Amit Pathak, Anish Kumar, Rahul Lamba
Abstract Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
2017-01-10
Technical Paper
2017-26-0022
Nagendran Manisekaran, Shankar Subramanian, Krishna Kumar Ramarathnam
Abstract Heavy commercial road vehicles are less stable in terms of rollover because of their elevated center of gravity (CG). Rollover is a type of accident in which the vehicle rotates excessively about its longitudinal axis. An untripped rollover happens when the centrifugal force acting at the CG is stronger than the cornering force acting at the tires and the vehicle rolls outwards of the turn. The accurate detection of the onset of untripped rollover is a critical step towards its prevention. This study presents a model based rollover index using the lateral Load Transfer Ratio (LTR) for detection of untripped rollover of heavy commercial road vehicles. The corroboration of any rollover detection and prevention strategy with a full-sized vehicle would be costly and potentially dangerous.
2017-01-10
Technical Paper
2017-26-0019
Kantilal P. Patil, Viswanatha Saddala
Abstract The objective of this paper is to minimize occupant injuries in offset frontal crash with pulse characterization, by keeping vehicle front crush space & occupant survival space constant. Crash pulse characterization greatly simplifies the representation of crash pulse time histories. The parameters used to characterize the crash pulse are velocity change, time & value of dynamic crush, and zero cross-over time. The crash pulse slope, peaks, average values at discrete time intervals have significant role on occupant injuries. Vehicle crash pulse of different trends have different impact on occupant injury. The intension of crash pulse characterization study is to come out with one particular crash pulse which shows minimum occupant injuries. This study will have significant impact in terms of front loading on crash development of vehicle.
2017-01-10
Technical Paper
2017-26-0130
Hemant P. Urdhwareshe
Abstract In the recent times, there have been number of cases of failure to pass the COP tests. When a vehicle fails a COP test, it is very embarrassing and expensive for the manufacturer as there is a loss of faith by the society and consumers. It is also painful for the certification agency as well as government. In this context, it is important to quantify and minimize the risk associated with these tests for manufacturers as well as certification agencies. The sampling plan specified in MoRTH / CMVR / TAP-115 is designed to quickly pass vehicles which have very low emissions and quickly reject (fail) vehicles having higher emissions compared to the specified limit. These sampling plans can be classified under Probability Ratio Sequential Tests (PRST).
2017-01-10
Technical Paper
2017-26-0325
Anup Batra, Sreenivasa Gupta, Husain Agha, K Rajakumar, Rajiv Modi
Abstract With the advancement in vehicle technology over the years, many intuitive technologies are coming in automotive passenger vehicles to improve the safety aspects during vehicle driving in night conditions. In addition to headlamps, cornering lamps or infrared camera with head up display etc. are evolving as a part of AFS (Advanced Front Lighting Systems) to aid driver vision. Many OEMs are following conventional methodology of subjective assessments with the ratings on different numerical scale mapped with customer acceptance to validate head lamps and its tech updates. These methods lag in getting repeatability of results, acceptance reliability and not knowing the limitations of the installed system due to high dependency on the selected evaluators. This paper emphasizes on robust test methodology development to validate the complete performance of cornering lamps with the objective test data analysis.
2017-01-10
Technical Paper
2017-26-0293
Sachin lambate, Kedar Shrikant Joshi, Gautam Diwan, Pratap Daphal
Abstract Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
2017-01-10
Technical Paper
2017-26-0349
Rushil Batra, Sahil Nanda, Shubham Singhal, Ranganath Singari
Abstract This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
2017-01-10
Technical Paper
2017-26-0016
Jeya Padmanaban, R. Ravishankar, Ajit Dandapani
Abstract The Road Accident Sampling System - India (RASSI) accident database being developed by an international consortium of manufacturers and safety researchers is currently India’s only source of in-depth crash data. The database includes information on accident, vehicle, and driver factors associated with each crash, which is collected through on-scene crash investigations conducted by trained crash investigators, from four key sample regions (Coimbatore, Pune, Ahmedabad, and Kolkata). As the RASSI database continues to grow, the next step is to ensure that the sample data can be reliably extrapolated to the whole of India. This paper is an initial attempt to develop national estimates by crash type based on a few sampling locations currently being investigated by the RASSI teams in India. RASSI data was treated as a stratified sample of Indian accidents, and the locations, where the crash data is being collected, were considered as primary sampling units.
2017-01-10
Technical Paper
2017-26-0005
Moennich Joerg, Girikumar Kumaresh, Thomas Lich, Andreas Georgi
Abstract The official Indian accident statistics show that the number of road accidents and fatalities are one of the highest worldwide. These official statistics provide important facts about the current accident situation. It is suspected that for various reasons not all accidents are reported to the official statistic. This study estimates the degree of underreporting of traffic accidents with casualties in India. In order to get a national overview of the traffic accident situation it is necessary to improve the knowledge about underreported accidents. Therefore, the in-depth accident database of “Road Accident Sampling System India” (RASSI) was analyzed [1]. This project is organized by a consortium that has collected traffic accidents scientifically in four different regions since 2011 on the spot which have been reported either by police or by local hospitals and own patrol by RASSI engineers.
2017-01-10
Technical Paper
2017-26-0341
Chaitanya Ashok Vichare, Sivakumar Palanivelu
Abstract The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
2017-01-10
Technical Paper
2017-26-0018
Douglas Eddy, Shreyas Patil, Sundar Krishnamurty, Ian Grosse, Chandrashekhar Thorbole
Abstract Prevention of passenger ejection from motor coach seats in the case of rollover and frontal crashes is critical for minimizing fatalities and injuries. This paper proposes a novel concept of affordably retrofitting 3-point seatbelts to protect passengers during these significant crash scenarios. Currently, the available options involve replacement of either the entire fleet, which takes time to avoid extremely high costs, or all seats with new seats that have seatbelts which is still expensive. Alternatively, this paper presents the development of an innovative product that can be installed in seat belt-ready bus structures at a fraction of the cost. The efficacy of the design is studied using finite element analysis (FEA) to meet Federal Motor Vehicle Safety Standards (FMVSS) 210 standards for conditions involved in frontal and side impacts.
2017-01-10
Technical Paper
2017-26-0363
Sathyadevi Jayaraman
Abstract The Insurance Institute for Highway Safety (IIHS) Small Overlap Frontal (SOF) impact assessment program is one of the latest challenges for the automotive development. The SOF load bypasses the primary crumple zone structure and concentrating the force in the front wheel, suspension and firewall - areas not traditionally designed to absorb and dissipate crash energy. Design changes of architectural components at later stages of product development is very difficult and expensive. This paper deals with the procedure to improve SOF performance through CAE as well as to develop the physical test cart to avoid the full vehicle SOF test. CAE procedure developed on chassis subsystem level to validate the SOF performance of front suspension. Using this procedure, design changes in the suspension components to improve the SOF performance can be done by keeping the suspension durability and other performance requirements as intact.
2017-01-10
Technical Paper
2017-26-0336
Ganesh Liladhar Yewale, Abhishek Tapkire, D Radhakrishna, Popat Shejwal, Kaushal Singh, Gaurav Panchal
Abstract VRDE has developed Wankel type rotary engine to achieve high power output & fuel efficiency for indigenization programme of UAVs. This engine is meeting all performance parameters needed for intended aerial vehicle. This paper describes the testing methodology followed by development engineers to prove the endurance and reliability of UAV engine for airworthiness certification. This paper gives the brief about testing carried out on the Wankel engine, failures faced during endurance testing and their rectification to enhance the life of the engine to achieve hundred test cycle mark. This paper also briefs about the test set up, endurance test cycles simulating the practical operating conditions.
Viewing 121 to 150 of 11100