Criteria

Text:
Topic:
Display:

Results

Viewing 121 to 150 of 11101
2017-03-28
Journal Article
2017-01-0365
Kentaro Sato, Takayuki Futatsuka, Jiro Hiramoto, Kei Nagasaka, Akira Akita, Takeshi Kashiyama
Abstract A simple testing method is proposed in order to investigate ductile fracture in crashed automotive components made from advanced high strength steels. This type of fracture is prone to occur at spot-welded joints and flange edges. It is well known that the heat affected zone (HAZ) is a weak point in high strength steel due to the formation of annealed material around the spot-welded nugget, and the flange edge also has low ductility due to the damage caused by shearing. The proposed method is designed to simulate a ductile fracture which initiates from a spot-welded portion or a sheared edge in automotive components which are deformed in a crash event. Automotive steel sheets with a wide range of tensile strengths from 590MPa to 1470MPa are examined in order to investigate the effect of material strength on fracture behavior. The effects of material cutting methods, namely, machining and shearing, are also investigated.
2017-03-28
Journal Article
2017-01-0378
Yuta Imanami, Kunikazu Tomita, Kazuaki Fukuoka, Kimihiro Nishimura
Abstract In order to develop a new carburizing steel material that realizes an intermediate heat treatment-free process in parts manufacturing, the cold forgeability of the as-rolled steel and suppression of abnormal grain growth of austenite were studied. It was shown that adjustment of addition amount of Si, Mn and Cr, suppression of dynamic strain aging during cold forging, and an increase of ferrite fraction by controlled rolling contribute to the reduction of deformation resistance. However, Nb precipitation control by fully utilizing mill manufacturing processes was also necessary for suppression of abnormal grain growth of austenite. A new steel for carburizing was developed by integrating these technologies, making it possible to eliminate annealing before cold forging and normalizing before carburizing simultaneously. Thus, the developed steel is an important innovation in the parts manufacturing process.
2017-03-28
Journal Article
2017-01-0379
Tau Tyan, Leonard Shaner, Matt Niesluchowski, Nand Kochhar, Dilip Bhalsod, Jason Wang
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
2017-03-28
Journal Article
2017-01-0368
Ying Zhao, Fangwu Ma, Longfan Yang, Yueqiang Wang, Hongyu Liang
Abstract The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
2017-03-28
Journal Article
2017-01-0716
Randy Hessel, Zongyu Yue, Rolf Reitz, Mark Musculus, Jacqueline O'Connor
Abstract One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
2017-03-28
Technical Paper
2017-01-1437
William Bortles, Sean McDonough, Connor Smith, Michael Stogsdill
Abstract The data obtained from event data recorders found in airbag control modules, powertrain control modules and rollover sensors in passenger vehicles has been validated and used to reconstruct crashes for years. Recently, a third-party system has been introduced that allows crash investigators and reconstructionists to access, preserve and analyze data from infotainment and telematics systems found in passenger vehicles. The infotainment and telematics systems in select vehicles retain information and event data from cellular telephones and other devices connected to the vehicle, vehicle events and navigation data in the form of tracklogs. These tracklogs provide a time history of a vehicle’s geolocation that may be useful in investigating an incident involving an automobile or reconstructing a crash. This paper presents an introduction to the type of data that may be retained and the methods for performing data acquisitions.
2017-03-28
Journal Article
2017-01-0178
Mark Hepokoski, Allen Curran, Sam Gullman, David Jacobsson
Abstract Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature.
2017-03-28
Journal Article
2017-01-1516
Daniel B. Honeycutt, Mesbah Uddin
Abstract Although, the implementation of lift-off prevention devices such as the NASCAR roof flaps have greatly reduced the frequency and severity of race vehicle aerodynamic lift-off incidents, airborne incidents still occur occasionally in motorsports. The effectiveness of existing lift-off prevention measures and future trends in lift-off prevention are addressed in this paper. The results and analysis presented in this paper will be of paramount interest to race vehicle designers and sanctioning bodies because the effects of aerodynamics on vehicle lift-off need to be comprehended, but there exists a scarcity of reliable data in this area.
2017-03-14
Technical Paper
2017-01-9750
Shawn Harrington, Joseph Teitelman, Erica Rummel, Brendan Morse, Peter Chen, Donald Eisentraut, Daniel McDonough
Abstract With the prevalence of satellite imagery in the analysis of collision events growing in the field of accident reconstruction, this research aims to quantify, refine, and compare the accuracies of measurements obtained utilizing conventional instruments to the measurements obtained using Google Earth Pro software. Researchers documented and obtained 1305 unique measurements from 68 locations in 25 states and provinces in the United States, Canada, and Australia using measuring wheels and tape measures. Measurements of relevant features at each location (crosswalks, curved roadways, off-road features, etc.) were documented and subdivided into three groups: On-Road, Off-Road, and Curved Path measurements. These measurements were compared to the measurements obtained of the same features from current and historical satellite imagery within Google Earth Pro.
2017-01-10
Technical Paper
2017-26-0003
Chandrashekhar Thorbole
Abstract The seatbelt is the primary restraint device that increases the level of occupant protection in a frontal crash. The belt performance is enhanced by the supplemental restraint provided by the airbag; seat and knee bolster working in combination with this primary restraining device. Small occupants are vulnerable to upper neck injuries when seated very close to the steering wheel. A lot of research and data availability for this situation ultimately led to the development of countermeasures capable of reducing upper neck loading. However, no data or research is available on the lower neck dynamic response of a small occupant primarily a 5th percentile female seated away from the steering wheel. MADYMO (Mathematical Dynamic Modeling), a biodynamic code is employed to validate a standard NHTSA (National Highway Traffic Safety Administration) frontal impact rigid barrier test with a 5th percentile ATD (Anthropomorphic Test Device) in the driver position.
2017-01-10
Technical Paper
2017-26-0001
Kuldeep Singh, Anoop Chawla, Sudipto Mukherjee, Pradeep Agrawal
Abstract The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
2017-01-10
Technical Paper
2017-26-0002
Sitikantha Padhy, Pradeep Agrawal, Yoginder Yadav
Abstract Most of the time in motor vehicle accidents, the driver of the vehicle (especially driver of the larger vehicle in case of collision involving multiple vehicles) is held responsible for rash and negligent driving. But in-depth study and statistics, points out several external or environmental factors playing crucial role in these unfortunate incidents. In some cases these factors directly influence an accident/crash and in some cases these factors influence the behavior pattern of the driver, which increases risk of unsafe practices. Based on the real time data collected by ADAC on the Gurgaon - Jaipur Stretch of NH-8 and others parts of India, some of the factors that directly or indirectly influences the drivers behaviour, are illustrated in this paper.
2017-01-10
Technical Paper
2017-26-0017
Celine Adalian, Alba Fornells, Núria Parera
Abstract In the 70’s, to reduce vehicle crash fatalities, NHTSA launched a Program, called NCAP, to compare the safety of cars. This Program was copied in Europe and around the world. It has been demonstrated that this kind of public assessment has forced OEM’s to invest in safety and to develop safer vehicles. Nowadays, NCAPs exist for nearly all regions around the world; all of them with the aim of improving vehicle safety. They apply the philosophy of an “overall rating”. In that way the information aims to be clearer and more general and will help to compare cars. Nevertheless, even though in every NCAP the overall assessment is given by a unique star rating, the specifications and requirements in each protocol are different. Each NCAP has been adapted to each region’s conditions, accidentology and traffic and therefore assessment criteria have their own peculiarities.
2017-01-10
Technical Paper
2017-26-0013
Frank Keck, Marco Alt, Arne Vater, Joseph Wessner
Abstract Current driver assistance systems or forward-looking safety systems mainly address traffic scenarios with cars travelling in the same direction or being stopped. These scenarios are - considered from a dynamical point of view - comparatively easy to handle due to the limitations of the relevant scenario parameters (relative velocity, possible accelerations, …). In the future it will be necessary to address oncoming traffic scenarios as well. These oncoming scenarios are responsible for a lot of critical accidents and the potential benefit is very high if one is able to reduce the crash severity in these scenarios. The problem remains that these scenarios are highly dynamical and therefore difficult to evaluate and handle. The following questions are of interest: How should a system be designed to be able to handle these situations? What are the critical scenarios which define the performance of the whole system? What are the limitations which cannot be overcome?
2017-01-10
Technical Paper
2017-26-0012
S Lakshmi Narayanan, Suresh Palraj, Madanagopal Mani, Shekhar Pathak
Abstract This paper makes an attempt to focus on a study to evaluate angle of vision and obstruction in a vehicle, it is an objective assessment through different percentiles of population. In a view of Safety and comfort of a driver, a good perception of environment in which his vehicle is operating will be a determining component. Driver visibility and hidden corner in vehicle is a major safety area for passengers and pedestrian. Driver eye vision is an important key factor to design vehicle windshield, rear window and A-Pillar/ B-Pillar, positioning of side view mirror and IRVM based on anthropometry data. This study focuses on method of capturing and measuring the i) Driver's Direct field of vision that the driver sees directly by moving his/her eyesii) Driver's Indirect field of vision in which driver views indirectly by using imaging devices Rear View mirror, Display cameras.iii) Driver's Angle of obstruction - by A pillar, B pillar.
2017-01-10
Technical Paper
2017-26-0010
Alba Fornells, Núria Parera
Abstract Over recent decades climate change and air pollution have become an increasingly important issue and so the transportation policies of many countries aim to make vehicles more efficient and promote the development and use of electric vehicles. According to the European Automotive Manufacturers Association, the registration of electric vehicles showed a substantial increase of 160.5%, that makes stakeholders assume a realistic market share for new electrically chargeable vehicles to be in the range of 2 to 8% by 2020 to 2025, based on today’s market. Electric and hybrid vehicles are submitted to the same passive and active safety standards as fossil fuel engine vehicles and so they have to pass crash tests defined by homologation regulations or other consumer standards such as Euro NCAP.
2017-01-10
Technical Paper
2017-26-0009
Abhinab Mohanty, Rajasekar Ramaraj, Prashant Dhage, Alok Kumar Ray
Abstract Today’s automotive world has moved towards an age where safety of a vehicle is given the topmost priority. Many stringent crash norms and testing methodology has been defined in order to evaluate the safety of a vehicle prior to its launch in a particular market. If the vehicle fails to meet any of these criteria then it is debarred from that particular market. With such stringent norms and regulations in place it becomes quite important on the engineer’s part to define the structural requirements and protect the space to meet the same. If the concept level platform definition is done properly it becomes very easy to achieve the crash targets with less cost and weight impact.
2017-01-10
Technical Paper
2017-26-0007
Siva Murugesan, Vishakha S Bhagat, B V Shamsundara, Abhay Mannikar
Abstract In year 2015, 17 people were killed every hour by road accidents in India [1]. The occurrence of road accidents is observed to be higher during night, when visibility is at its lowest. The two factors which affect visibility are insufficient illumination and glare caused by the oncoming traffic. The Adaptive Front Lighting System [AFS] is an active safety feature which addresses these problems by employing specific lighting modes for Town, Country, Expressway conditions and automatic switching between Driving Beam and Passing Beam whenever required. Matrix of LEDs or a Projector with an actuator or a combination of both is employed in achieving different Lighting modes. The projector based AFS module is preferred for implementing the AFS control logic for passing beam owing to its economic cost.
2017-01-10
Technical Paper
2017-26-0023
Amit Pathak, Anish Kumar, Rahul Lamba
Abstract Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
2017-01-10
Technical Paper
2017-26-0022
Nagendran Manisekaran, Shankar Subramanian, Krishna Kumar Ramarathnam
Abstract Heavy commercial road vehicles are less stable in terms of rollover because of their elevated center of gravity (CG). Rollover is a type of accident in which the vehicle rotates excessively about its longitudinal axis. An untripped rollover happens when the centrifugal force acting at the CG is stronger than the cornering force acting at the tires and the vehicle rolls outwards of the turn. The accurate detection of the onset of untripped rollover is a critical step towards its prevention. This study presents a model based rollover index using the lateral Load Transfer Ratio (LTR) for detection of untripped rollover of heavy commercial road vehicles. The corroboration of any rollover detection and prevention strategy with a full-sized vehicle would be costly and potentially dangerous.
2017-01-10
Technical Paper
2017-26-0019
Kantilal P. Patil, Viswanatha Saddala
Abstract The objective of this paper is to minimize occupant injuries in offset frontal crash with pulse characterization, by keeping vehicle front crush space & occupant survival space constant. Crash pulse characterization greatly simplifies the representation of crash pulse time histories. The parameters used to characterize the crash pulse are velocity change, time & value of dynamic crush, and zero cross-over time. The crash pulse slope, peaks, average values at discrete time intervals have significant role on occupant injuries. Vehicle crash pulse of different trends have different impact on occupant injury. The intension of crash pulse characterization study is to come out with one particular crash pulse which shows minimum occupant injuries. This study will have significant impact in terms of front loading on crash development of vehicle.
2017-01-10
Technical Paper
2017-26-0130
Hemant P. Urdhwareshe
Abstract In the recent times, there have been number of cases of failure to pass the COP tests. When a vehicle fails a COP test, it is very embarrassing and expensive for the manufacturer as there is a loss of faith by the society and consumers. It is also painful for the certification agency as well as government. In this context, it is important to quantify and minimize the risk associated with these tests for manufacturers as well as certification agencies. The sampling plan specified in MoRTH / CMVR / TAP-115 is designed to quickly pass vehicles which have very low emissions and quickly reject (fail) vehicles having higher emissions compared to the specified limit. These sampling plans can be classified under Probability Ratio Sequential Tests (PRST).
2017-01-10
Technical Paper
2017-26-0325
Anup Batra, Sreenivasa Gupta, Husain Agha, K Rajakumar, Rajiv Modi
Abstract With the advancement in vehicle technology over the years, many intuitive technologies are coming in automotive passenger vehicles to improve the safety aspects during vehicle driving in night conditions. In addition to headlamps, cornering lamps or infrared camera with head up display etc. are evolving as a part of AFS (Advanced Front Lighting Systems) to aid driver vision. Many OEMs are following conventional methodology of subjective assessments with the ratings on different numerical scale mapped with customer acceptance to validate head lamps and its tech updates. These methods lag in getting repeatability of results, acceptance reliability and not knowing the limitations of the installed system due to high dependency on the selected evaluators. This paper emphasizes on robust test methodology development to validate the complete performance of cornering lamps with the objective test data analysis.
2017-01-10
Technical Paper
2017-26-0293
Sachin lambate, Kedar Shrikant Joshi, Gautam Diwan, Pratap Daphal
Abstract Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
2017-01-10
Technical Paper
2017-26-0349
Rushil Batra, Sahil Nanda, Shubham Singhal, Ranganath Singari
Abstract This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal at various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
2017-01-10
Technical Paper
2017-26-0016
Jeya Padmanaban, R. Ravishankar, Ajit Dandapani
Abstract The Road Accident Sampling System - India (RASSI) accident database being developed by an international consortium of manufacturers and safety researchers is currently India’s only source of in-depth crash data. The database includes information on accident, vehicle, and driver factors associated with each crash, which is collected through on-scene crash investigations conducted by trained crash investigators, from four key sample regions (Coimbatore, Pune, Ahmedabad, and Kolkata). As the RASSI database continues to grow, the next step is to ensure that the sample data can be reliably extrapolated to the whole of India. This paper is an initial attempt to develop national estimates by crash type based on a few sampling locations currently being investigated by the RASSI teams in India. RASSI data was treated as a stratified sample of Indian accidents, and the locations, where the crash data is being collected, were considered as primary sampling units.
2017-01-10
Technical Paper
2017-26-0005
Moennich Joerg, Girikumar Kumaresh, Thomas Lich, Andreas Georgi
Abstract The official Indian accident statistics show that the number of road accidents and fatalities are one of the highest worldwide. These official statistics provide important facts about the current accident situation. It is suspected that for various reasons not all accidents are reported to the official statistic. This study estimates the degree of underreporting of traffic accidents with casualties in India. In order to get a national overview of the traffic accident situation it is necessary to improve the knowledge about underreported accidents. Therefore, the in-depth accident database of “Road Accident Sampling System India” (RASSI) was analyzed [1]. This project is organized by a consortium that has collected traffic accidents scientifically in four different regions since 2011 on the spot which have been reported either by police or by local hospitals and own patrol by RASSI engineers.
2017-01-10
Technical Paper
2017-26-0341
Chaitanya Ashok Vichare, Sivakumar Palanivelu
Abstract The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
2017-01-10
Technical Paper
2017-26-0018
Douglas Eddy, Shreyas Patil, Sundar Krishnamurty, Ian Grosse, Chandrashekhar Thorbole
Abstract Prevention of passenger ejection from motor coach seats in the case of rollover and frontal crashes is critical for minimizing fatalities and injuries. This paper proposes a novel concept of affordably retrofitting 3-point seatbelts to protect passengers during these significant crash scenarios. Currently, the available options involve replacement of either the entire fleet, which takes time to avoid extremely high costs, or all seats with new seats that have seatbelts which is still expensive. Alternatively, this paper presents the development of an innovative product that can be installed in seat belt-ready bus structures at a fraction of the cost. The efficacy of the design is studied using finite element analysis (FEA) to meet Federal Motor Vehicle Safety Standards (FMVSS) 210 standards for conditions involved in frontal and side impacts.
2017-01-10
Technical Paper
2017-26-0363
Sathyadevi Jayaraman
Abstract The Insurance Institute for Highway Safety (IIHS) Small Overlap Frontal (SOF) impact assessment program is one of the latest challenges for the automotive development. The SOF load bypasses the primary crumple zone structure and concentrating the force in the front wheel, suspension and firewall - areas not traditionally designed to absorb and dissipate crash energy. Design changes of architectural components at later stages of product development is very difficult and expensive. This paper deals with the procedure to improve SOF performance through CAE as well as to develop the physical test cart to avoid the full vehicle SOF test. CAE procedure developed on chassis subsystem level to validate the SOF performance of front suspension. Using this procedure, design changes in the suspension components to improve the SOF performance can be done by keeping the suspension durability and other performance requirements as intact.
Viewing 121 to 150 of 11101