Criteria

Text:
Topic:
Display:

Results

Viewing 91 to 120 of 11100
2017-03-28
Journal Article
2017-01-0015
Wolfgang Granig, Dirk Hammerschmidt, Hubert Zangl
Abstract Functional safe products conforming to the ISO 26262 standard are getting more important for automotive applications wherein electronic takes more and more response for safety relevant operations. Consequently safety mechanisms are needed and implemented in order to reach defined functional safety targets. To prove their effectiveness diagnostic coverage provides a measurable quantity. A straight forward safety mechanism for sensor systems can be established by redundant signal paths measuring the same physical quantity and subsequently performing an independent output difference-check that decides if the data can be transmitted or an error message shall be sent. This paper focuses on the diagnostic coverage figure calculation of such data correlation-checks for linear sensors which are also shown in ISO 26262 part5:2011 ANNEX D2.10.2.
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
Abstract With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
Abstract With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Abstract Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
2017-03-28
Technical Paper
2017-01-0064
Agish George, Jody Nelson
Abstract The ISO 26262 standard for functional safety was first released in 2011 and has been widely incorporated by most OEMs and Tier1 suppliers. The design and conformance of the product to functional safety standards is strongly intertwined with the product development cycle and needs to be carefully managed. The consideration for functional safety needs to begin right from the product’s concept phase through engineering and production and finally decommissioning. The application of the standard in a project can bring significant challenges especially to managers who are relatively new to the standard. This paper provides some guidelines on the key tasks involved in managing ISO26262 in projects and some ways to approach them. The paper is expected to help managers manage ISO26262 compliant projects. The paper also tries to come up with a metric that can be used for resource estimation for implementing ISO26262 in projects.
2017-03-28
Technical Paper
2017-01-0060
Heiko Doerr, Thomas End, Lena Kaland
Abstract The release of the ISO 26262 in November 2011 was a major milestone for the safeguarding of safety-related systems that include one or more electrical and / or electronic (E/E) systems and that are installed in series production passenger cars. Although no specific requirements exist for a model-based software development process, ISO 26262 compiles general requirements and recommendations that need to be applied to model-based development. The second edition of the ISO 26262 has been distributed for review with a final publication scheduled for 2018. This revised edition not only integrates the experiences of the last few years but also extends the overall scope of safety-related systems. In order to determine the necessary adaptions for already existing software development processes, a detailed analysis of this revision is necessary. In this work, we focus on an analysis and the impact on model-based software development of safety-related systems.
2017-03-28
Journal Article
2017-01-0112
Mingming Zhao, Hongyan Wang, Junyi Chen, Xiao Xu, Yutong He
Abstract Rear-end accident is one of the most important collision modes in China, which often leads to severe accident consequences due to the high collision velocity. Autonomous Emergency Braking (AEB) system could perform emergency brake automatically in dangerous situation and mitigate the consequence. This study focused on the analysis of the rear-end accidents in China in order to discuss about the parameters of Time–to-Collision (TTC) and the comprehensive evaluation of typical AEB. A sample of 84 accidents was in-depth investigated and reconstructed, providing a comprehensive set of data describing the pre-crash matrix. Each accident in this sample is modeled numerically by the simulation tool PC-Crash. In parallel, a model representing the function of an AEB system has been established. This AEB system applies partial braking when the TTC ≤ TTC1 and full braking when the TTC ≤ TTC2.
2017-03-28
Technical Paper
2017-01-1408
Satoshi Kozai, Yoshihiko Takahashi, Akihiro Kida, Takayuki Hiromitsu, Shinji Kitaura, Sadamasa Sawada, Gladys Acervo, Marius Ichim
Abstract A Rear Cross Traffic Auto Brake (RCTAB) system has been developed that uses radar sensors to detect vehicles approaching from the right or left at the rear of the driver’s vehicle, and then performs braking control if the system judges that a collision may occur. This system predicts the intersecting course of approaching vehicles and uses the calculated time-to-collision (TTC) to control the timing of automatic braking with the aim of helping prevent unnecessary operation while ensuring system performance.
2017-03-28
Technical Paper
2017-01-0075
Shinya Kitayama, Toshiyuki Kondou, Hirokazu Ohyabu, Masaaki Hirose, Haneda Narihiro, Ryuta Maeda
Abstract In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
2017-03-28
Technical Paper
2017-01-0080
Qilu Wang, Bo Yang, Gangfeng Tan, Shengguang Xiong, XiaoXiao Zhou
Abstract Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Abstract Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-0085
Wanyang Xia, Yahui Wu, Gangfeng Tan, Xianyao Ping, Benlong Liu
Abstract Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
2017-03-28
Technical Paper
2017-01-0091
Songyao Zhou, Gangfeng Tan, Kangping Ji, Renjie Zhou, Hao Liu
Abstract The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
2017-03-28
Technical Paper
2017-01-0096
Valentin Soloiu, Bernard Ibru, Thomas Beyerl, Tyler Naes, Charvi Popat, Cassandra Sommer, Brittany Williams
Abstract An important aspect of an autonomous vehicle system, aside from the crucial features of path following and obstacle detection, is the ability to accurately and effectively recognize visual cues present on the roads, such as traffic lanes, signs and lights. This ability is important because very few vehicles are autonomously driven, and must integrate with conventionally operated vehicles. An enhanced infrastructure has yet to be available solely for autonomous vehicles to more easily navigate lanes and intersections non-visually. Recognizing these cues efficiently can be a complicated task as it not only involves constantly gathering visual information from the vehicle’s surroundings, but also requires accurate real time processing. Ambiguity of traffic control signals challenges even the most advanced computer decision making algorithms. The vehicle then must keep a predetermined position within its travel lane based on its interpretation of its surroundings.
2017-03-28
Technical Paper
2017-01-0107
Arvind Jayaraman, Ashley Micks, Ethan Gross
Abstract Recreating traffic scenarios for testing autonomous driving in the real world requires significant time, resources and expense, and can present a safety risk if hazardous scenarios are tested. Using a 3D virtual environment to enable testing of many of these traffic scenarios on the desktop or cluster significantly reduces the amount of required road tests. In order to facilitate the development of perception and control algorithms for level 4 autonomy, a shared memory interface between MATLAB, Simulink, and Unreal Engine 4 can send information (such as vehicle control signals) back to the virtual environment. The shared memory interface conveys arbitrary numerical data, RGB image data, and point cloud data for the simulation of LiDAR sensors.
2017-03-28
Technical Paper
2017-01-0110
Hao Sun, Weiwen Deng, Chen Su, Jian Wu
Abstract The ability to recognize traffic vehicles’ lane change maneuver lays the foundation for predicting their long-term trajectories in real-time, which is a key component for Advanced Driver Assistance Systems (ADAS) and autonomous automobiles. Learning-based approach is powerful and efficient, such approach has been used to solve maneuver recognition problems of the ego vehicles on conventional researches. However, since the parameters and driving states of the traffic vehicles are hardly observed by exteroceptive sensors, the performance of traditional methods cannot be guaranteed. In this paper, a novel approach using multi-class probability estimates and Bayesian inference model is proposed for traffic vehicle lane change maneuver recognition. The multi-class recognition problem is first decomposed into three binary problems under error correcting output codes (ECOC) framework.
2017-03-28
Technical Paper
2017-01-0113
Vaclav Jirovsky
Abstract Today's vehicles are being more often equipped with systems, which are autonomously influencing the vehicle behavior. More systems of the kind and even fully autonomous vehicles in regular traffic are expected by OEMs in Europe around year 2025. Driving is highly multitasking activity and human errors emerge in situations, when he is unable to process and understand the essential amount of information. Future autonomous systems very often rely on some type of inter-vehicular communication. This shall provide the vehicle with higher amount of information, than driver uses in his decision making process. Therefore, currently used 1-D quantity TTC (time-to-collision) will become inadequate. Regardless the vehicle is driven by human or robot, it’s always necessary to know, whether and which reaction is necessary to perform. Adaptable autonomous vehicle systems will need to analyze the driver’s situation awareness level.
2017-03-28
Technical Paper
2017-01-0116
Ankit Goila, Ambarish Desai, Feng Dang, Jian Dong, Rahul Shetty, Rakesh Babu Kailasa, Mahdi Heydari, Yang Wang, Yue Sun, Manikanta Jonnalagadda, Mohammed Alhasan, Hanlong Yang, Katherine R. Lastoskie
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
2017-03-28
Technical Paper
2017-01-0058
Dajiang Suo, Sarra Yako, Mathew Boesch, Kyle Post
Developing requirements for automotive electric/electronic systems is challenging as they are becoming increasingly software-intensive. Increasingly, designs must account for unintended interactions among software features, combined with unforeseen environmental factors. In addition, engineers have to make architectural tradeoff and assign responsibilities to each component in the system before developing safety requirements. ISO 26262 is an industry standard for the functional safety of automotive electric/electronic systems. It specifies various processes and procedures for ensuring functional safety, but does not limit the methods that can be used for hazard and safety analysis. System Theoretic Process Analysis (STPA) is a new technique for hazard analysis in the sense that hazards are caused by unsafe interactions between components (including humans) as well as component failures and faults.
2017-03-28
Journal Article
2017-01-0293
Tina Hull
Abstract Recent advances in technology allow machine safeguarding to shift from a system that completely shuts down the hazardous part of a machine, regardless of the action, to one with a controlled response. This intelligent robotics safeguarding can be based on conditions such as the type of task, how it is performed, entry and exit locations, and the operator’s movement within the hazard zone. Such a strategy could increase production rates by allowing robots to operate at higher speeds within dynamic environments. When used as part of a preventative maintenance program, reliability data can predict component failure rates and reduce the probability that operators will access the hazard zone. Programming techniques, such as function blocks to monitor component usage, can be used to evaluate trends. SQL (Structured Query Language) databases can track access and frequency trends, which can lead to design improvements and indicate changes affecting the system.
2017-03-28
Journal Article
2017-01-0365
Kentaro Sato, Takayuki Futatsuka, Jiro Hiramoto, Kei Nagasaka, Akira Akita, Takeshi Kashiyama
Abstract A simple testing method is proposed in order to investigate ductile fracture in crashed automotive components made from advanced high strength steels. This type of fracture is prone to occur at spot-welded joints and flange edges. It is well known that the heat affected zone (HAZ) is a weak point in high strength steel due to the formation of annealed material around the spot-welded nugget, and the flange edge also has low ductility due to the damage caused by shearing. The proposed method is designed to simulate a ductile fracture which initiates from a spot-welded portion or a sheared edge in automotive components which are deformed in a crash event. Automotive steel sheets with a wide range of tensile strengths from 590MPa to 1470MPa are examined in order to investigate the effect of material strength on fracture behavior. The effects of material cutting methods, namely, machining and shearing, are also investigated.
2017-03-28
Journal Article
2017-01-0367
Yueqian Jia, Yu-wei Wang, Yuanli Bai
Abstract A fully modularized framework was established to combine isotropic, kinematic, and cross hardening behaviors under non-monotonic loading conditions for advanced high strength steels. Experiments under the following types of non-proportional loading conditions were conducted, 1) uniaxial tension-compression-tension/compression-tension-compression full cycle reversal loading, 2) uniaxial reversal loading with multiple cycles, and 3) reversal shear. The calibrated new model is decoupled between isotropic and kinematic hardening behaviors, and independent on both anisotropic yield criterion and fracture model. Nine materials were calibrated using the model, include: DP590, DP600, DP780, TRIP780, DP980LY, QP980, AK Steel DP980, TBF1180, and AK Steel DP1180. Good correlation was observed between experimental and modeled results.
2017-03-28
Journal Article
2017-01-0368
Ying Zhao, Fangwu Ma, Longfan Yang, Yueqiang Wang, Hongyu Liang
Abstract The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
2017-03-28
Journal Article
2017-01-0378
Yuta Imanami, Kunikazu Tomita, Kazuaki Fukuoka, Kimihiro Nishimura
Abstract In order to develop a new carburizing steel material that realizes an intermediate heat treatment-free process in parts manufacturing, the cold forgeability of the as-rolled steel and suppression of abnormal grain growth of austenite were studied. It was shown that adjustment of addition amount of Si, Mn and Cr, suppression of dynamic strain aging during cold forging, and an increase of ferrite fraction by controlled rolling contribute to the reduction of deformation resistance. However, Nb precipitation control by fully utilizing mill manufacturing processes was also necessary for suppression of abnormal grain growth of austenite. A new steel for carburizing was developed by integrating these technologies, making it possible to eliminate annealing before cold forging and normalizing before carburizing simultaneously. Thus, the developed steel is an important innovation in the parts manufacturing process.
2017-03-28
Journal Article
2017-01-0379
Tau Tyan, Leonard Shaner, Matt Niesluchowski, Nand Kochhar, Dilip Bhalsod, Jason Wang
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
2017-03-28
Technical Paper
2017-01-1471
Xiao Luo, Wenjing Du, Hao Li, Peiyu LI, Chunsheng Ma, Shucai Xu, Jinhuan Zhang
Abstract Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
2017-03-28
Technical Paper
2017-01-1423
Alan F. Asay, Christopher D. Armstrong, Bradley Higgins, John Steiner
Abstract The rear override crash behavior of full-size and light duty pickup trucks was examined. A series of ten full-scale, front and rear override impact crash tests were conducted involving four full-size pickup trucks, two light duty pickup trucks, and one sport utility vehicle (SUV). The tests were conducted utilizing a fabricated steel rigid barrier mounted on the front of the Massive Moving Barrier (MMB) test device with full overlap of the test vehicle. Crush ranged from 25.0 to 77.9 inches for impact speeds of 21.7 to 36.0 mph. These override tests on pickups were conducted to provide more basis in an area that is underrepresented in the literature. Each test was documented and measured prior to, and following, the crash test. The stiffness parameters were calculated and presented using constant stiffness, force saturation, and the power law damage models.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1397
Alba Fornells, Núria Parera, Adria Ferrer, Anita Fiorentino
Abstract While accident data show a decreasing number of fatalities and serious injuries on European Union (EU) roads, recent data from ERSO (European Road Safety Observatory) show an increasing proportion of elderly in the fatality statistics. Due to the continuous increase of life expectancy in Europe and other highly-developed countries, the elderly make up a higher number of drivers and other road users such as bicyclists and pedestrians whose mobility needs and habits have been changing over recent years. Moreover, due to their greater vulnerability, the elderly are more likely to be seriously injured in any given accident than younger people. With the goal of improving the safety mobility of the elderly, the SENIORS Project, funded by the European Commission, is investigating and assessing the injury reduction that can be achieved through innovative tools and safety systems.
Viewing 91 to 120 of 11100