Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 11101
2017-06-05
Technical Paper
2017-01-1889
Todd Tousignant, Kiran Govindswamy, Georg Eisele, Christoph Steffens, Dean Tomazic
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 re-duction targets for 2025 and beyond. Electric and hybrid electric vehicles do not typically utilize IC engines for low-speed operation. Under these low-speed operating conditions, the vehicles are much quieter than conventional IC engine-powered vehicles, making their approach difficult to detect by pedestrians. To mitigate this safety concern, many manufacturers have synthesized noise (using exterior speakers) to increase detection distance. Further, the US National Highway Traffic Safety Administration (NHTSA) has provided recommendations pursuant to the Pedestrian Safety Enhancement Act (PSEA) of 2010 for such exterior noise signatures to en-sure detectability.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking system. The torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), in the presence of external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, may lead to NVH issues known as clonk. In this study, first of all the positive effect of a brake torque application at the driving wheels during such maneuvers on transmission NVH performance is shown. After that, a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize the energy loss.
2017-06-05
Journal Article
2017-01-1762
Michael Roan, M. Lucas Neurauter, Douglas Moore, Dan Glaser
Hybrid and electric vehicles (HVs and EVs) have demonstrated low noise levels relative to their Internal Combustion Engine (ICE) counterparts, particularly at low speeds. As the number of HVs/EVs on the road increases, so does the need for data quantifying auditory detectability by pedestrians; in particular, those who are vision impaired. Manufacturers have begun to implement additive noise solutions designed to increase vehicle detectability while in electric mode and/or when traveling below a certain speed. A detailed description of the real-time acoustic measurement system, the corresponding vehicular data, development of an immersive noise field, and experimental methods pertaining to a recent evaluation of candidate vehicles is provided herein. Listener testing was completed by 24 legally blind test subjects for four vehicle types: an EV and HV with different additive noise approaches, an EV with no additive noise, and a traditional ICE vehicle.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-03-28
Technical Paper
2017-01-1299
Nagurbabu Noorbhasha, Brendan J. O'Toole
Abstract The objective of this research is to design and analyze a roll cage structure for an off-road vehicle that was used for SAE Baja competition by UNLV SAE Baja team. Baja SAE is an intercollegiate competition to design, fabricate, and race a small, single passenger, off-road vehicle powered by a 10 HP Briggs Stratton 4-Stroke gasoline engine. Since the off-road vehicle is powered by a small capacity engine, the weight of the structure is very critical and must be optimized to improve the performance of the vehicle. In an effort to optimize the structure, a finite element analysis (FEA) was performed and the effects of stress and deformation were studied for a linear static frontal impact analysis on roll cage structure. The frame was further modified for structural rigidity. Additional strengthening gussets were added at the locations of high stresses to reduce the stress concentration.
2017-03-28
Technical Paper
2017-01-1195
Masahiro Kimoto
Abstract SAE standards require the function of a Manual Service Disconnect (MSD), when open, to remove any voltage between positive and negative Rechargeable Energy Storage System (RESS) output terminals. Another SAE standard specifies that measured voltage across all external battery terminal sets shall be less than 60 VDC within 5 seconds after the manual disconnect is actuated with the automatic disconnect (e.g., contactors) closed. In this paper, the location of the manual service disconnect is reviewed to meet isolation requirement of the battery pack system (i.e., RESS). Battery architectures with manual service disconnect located at the most positive side, most negative side, and center of the array or the pack were studied. Voltage measurement points and single point failure modes were considered. It was found that MSD location for a single contactor pack is most effective in reducing voltage potential at the terminals when placed on the other side of the contactor.
2017-03-28
Technical Paper
2017-01-1208
Kristin R. Cooney
Abstract This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
2017-03-28
Technical Paper
2017-01-1202
Ben Tabatowski-Bush
Abstract The Battery Monitoring Integrated Circuit (BMIC) is a key technology for Battery Electronics in the electrification of vehicles. Generally speaking, every production hybrid, plug-in hybrid, and battery electric vehicle uses some type of BMIC to monitor the voltage of each lithium battery cell. In order to achieve Functional Safety for the traction battery packs for these electrified vehicles, most designs require higher ASIL ratings for the BMIC such as C or D. For the entire market of available BMIC’s, there is a generic feature set that can be found on almost every IC on the market, such as a front end multiplexer, one or more precision references, one or more Analog to Digital (A/D) converters, a power supply, communications circuits, and window comparators. There is also a fairly consistent suite of self-diagnostics, available on just about every available BMIC, to detect failures and enable achievement of the appropriate ASIL rating.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Journal Article
2017-01-1475
Saeed Barbat, Xiaowei Li
Abstract On December 2015, The National Highway Traffic Safety Administration (NHTSA) published its proposal to implement U.S New Car Assessment Program (NCAP) changes covering three categories of crashworthiness, crash avoidance and pedestrian protection, beginning with the 2019 model year. The crashworthiness category included a new frontal oblique impact (OI) test protocol. The test compromises of a new Oblique Moving Deformable Barrier (OMDB), new THOR 50th percentile male (THOR-50M) anthropomorphic test device (ATD), and a new test configuration. An OMDB of 2,486 kg (5,480 lb) impacts a stationary target vehicle at a speed of 90 kph (56 mph) at an angle of 15 degrees with a 35% barrier overlap with the front end of the target vehicle. In vehicle-to-vehicle collisions, the lighter weight vehicle experience higher velocity change and higher acceleration levels, thereby, occupants in the lighter vehicle experience higher injury risk.
2017-03-28
Technical Paper
2017-01-1474
Raed E. El-Jawahri, Agnes Kim, Dean Jaradi, Rich Ruthinowski, Kevin Siasoco, Cortney Stancato, Para Weerappuli
Abstract Sled tests simulating full-frontal rigid barrier impact were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on point estimate basis.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
Abstract SAE J211 provides no definitive specification as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for impact data. Accordingly, a 3-2-2-2 array (nine-accelerometer-package or NAP) of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th-percentile-male ATD headform and compared in a variety of impact events and multibody simulations. Appropriate low-pass digital filter cutoff frequencies for differentiating the angular rate sensor data into angular accelerations were sought via residual analysis in accordance with current SAE J211 guidelines.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Technical Paper
2017-01-1468
Do Hoi KIm
Previous work identified a relationship between vehicle drop and dummy injury under the high-speed frontal impact condition [1]. The results showed that vehicle drop greater than 60mm made the dummy injury worse. Moreover, that work identified the front side member as the crucial part affecting the vehicle drop. In this study, the body structure mechanism was studied to reduce vehicle drop by controlling the front side member, shotgun, and A-pillar. By analyzing full vehicles, it was recognized that the arch shape of the front side member was very important. Furthermore, if the top of the arch shape of front side member, shotgun, and A-pillar were connected well, then the body deformation energy could lift the lower part of A-pillar, effectively reducing vehicle drop. This structure design concept is named “Body Lift Structure” (BLS). The BLS was applied to B and C segment platforms. Additionally, a “Ring” shape was defined by the front side member, dash panel, and A-pillar.
2017-03-28
Technical Paper
2017-01-1471
Xiao Luo, Wenjing Du, Hao Li, Peiyu LI, Chunsheng Ma, Shucai Xu, Jinhuan Zhang
Abstract Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
2017-03-28
Journal Article
2017-01-1472
Niels Pasligh, Robert Schilling, Marian Bulla
Abstract Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection.
2017-03-28
Journal Article
2017-01-1450
Daniel Perez-Rapela, Jason Forman, Haeyoung Jeon, Jeff Crandall
Abstract Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
2017-03-28
Technical Paper
2017-01-1451
Jan Vychytil, Jan Spicka, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this paper a novel approach in developing a simplified model of a vehicle front-end is presented. Its surface is segmented to form an MBS model with hundreds of rigid bodies connected via translational joints to a base body. Local stiffness of each joint is calibrated using a headform or a legform impactor corresponding to the EuroNCAP mapping. Hence, the distribution of stiffness of the front-end is taken into account. The model of the front-end is embedded in a whole model of a small car in a simulation of a real accident. The VIRTHUMAN model is scaled in height, weight and age to represent precisely the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident. Namely, injuries of head, chest and lower extremities are confirmed. Finally, mechanical response of developed vehicle model is compared to an FE model of the same vehicle in a pedestrian impact scenario.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Abstract Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
2017-03-28
Technical Paper
2017-01-1460
Nitesh Jadhav, Linda Zhao, Senthilkumar Mahadevan, Bill Sherwood, Krishnakanth Aekbote, Dilip Bhalsod
Abstract The Pelvis-Thorax Side Air Bag (PTSAB) is a typical restraint countermeasure offered for protection of occupants in the vehicle during side impact tests. Currently, the dynamic performance of PTSAB for occupant injury assessment in side impact is limited to full-vehicle evaluation and sled testing, with limited capability in computer aided engineering (CAE). The widely used CAE method for PTSAB is a flat bag with uniform pressure. The flat PTSAB model with uniform pressure has limitations because of its inability to capture airbag deployment during gap closure which results in reduced accuracy while predicting occupant responses. Hence there is a need to develop CAE capability to enhance the accuracy of prediction of occupant responses to meet performance targets in regulatory and public domain side impact tests. This paper describes a new CAE methodology for assessment of PTSAB in side impact.
2017-03-28
Technical Paper
2017-01-1446
Allen Charles Bosio, Paul Marable, Marcus Ward, Bradley Staines
Abstract A dual-chambered passenger airbag was developed for the 2011 USNCAP to minimize neck loading for the belted 5th female dummy while restraining the unbelted 50th dummy for FMVSS208. This unique, patented design adaptively controlled venting between chambers based on occupant stature. A patented pressure-responsive vent on the second chamber permitted aspiration into the second chamber before a delayed outflow to the environment. The delayed flow through the pressure-responsive vent from the second chamber acted like a pressure-limiting membrane vent to advantageously reduce the injury assessment values for the HIC and the Nij for the 5th female dummy.
2017-03-28
Journal Article
2017-01-1445
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli, Noelle Baker
Abstract Ford Motor Company introduced the inflatable seatbelt system in 2011 and the system is now available in the second row of several Ford and Lincoln models. An important consideration is the interaction of the inflatable seatbelt system with child restraint systems (CRS). A comprehensive series of frontal impact sled tests, using a standardized test method, was conducted to compare the performance of rear-facing-only CRS installed using an inflatable seatbelt to the same CRS installed using a standard seatbelt. CRS models from several manufacturers in the North American market were tested both with and without their bases. CRABI 12 month old or Hybrid III 3 year old anthropomorphic test devices (ATD) were restrained in the CRS. The assessment included the ability to achieve a satisfactory installation with the inflatable seatbelt, comparisons of ATD and CRS kinematics, CRS system integrity, and comparisons of ATD responses.
2017-03-28
Technical Paper
2017-01-1448
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli
Abstract Ford Motor Company introduced the automotive industry’s first second row inflatable seatbelt system in 2011. The system is currently available in the outboard seating positions of the second row of several Ford and Lincoln models. An important consideration for this system is the interaction with child restraint systems (CRS) when it is used to install a CRS or used in conjunction with belt position booster. A novel test methodology to assess the interaction of CRS with Ford and Lincoln inflatable seatbelts through frontal impact sled tests is explained. Details of test methods including construction of additional fixtures and hardware are highlighted. This procedure is designed to enable test labs capable of running Federal Motor Vehicle Safety Standard (FMVSS) 213 testing to adapt this test method, with minimal fabrication, by utilizing existing test benches.
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1369
Abtine Tavassoli, Sam Perlmutter, Dung Bui, James Todd, Laurene Milan, David Krauss
Abstract Vision plays a key role in the safe and proper operation of vehicles. To safely navigate, drivers constantly scan their environments, which includes attending to the outside environment as well as the inside of the driver compartment. For example, a driver may monitor various instruments and road signage to ensure that they are traveling at an appropriate speed. Although there has been work done on naturalistic driver gaze behavior, little is known about what information drivers glean while driving. Here, we present a methodology that has been used to build a database that seeks to provide a framework to supply answers to various ongoing questions regarding gaze and driver behavior. We discuss the simultaneous recording of eye-tracking, head rotation kinematics, and vehicle dynamics during naturalistic driving in order to examine driver behavior with a particular focus on how this correlates with gaze behavior.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Abstract Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-1364
Kashif Ali, Vikas Kumar, Virat Kalra
Abstract Vehicle occupant packaging and interior and exterior body design determine the overall visibility that the driver of the vehicle has. Visibility is also dependent on technological features inside and outside the passenger cell like proximity sensors and cameras etc. The focus of this research is to find and analyze the visibility percentages, blind spot angles and blind spot areas using statistical data both individually and as vehicle class put together in order to justify the need for standardization of basic visibility enhancing aids. This study has an added significance considering the Indian road transportation statistics. On an average, 16 people die every hour due to road accidents in India. The aim is to focus on cases that affect visibility in low speed driving, coasting and reversing that causes loss to public and private property.
2017-03-28
Technical Paper
2017-01-1393
Georges Beurier, Michelle Cardoso, Xuguang Wang
Abstract A new experimental seat was designed to investigate sitting biomechanics. Previous literature suggested links between sitting discomfort and shear force, however, research on this topic is limited. The evaluation of sitting discomfort derived from past research has been primarily associated with seat pressure distribution. The key innovative feature of the experimental seat is not only pressure distribution evaluation but shear forces as well. The seat pan of the experimental seat compromises of a matrix of 52 cylinders, each equipped with a tri-axial force sensor, enabling us to measure both normal and tangential forces. The position of each cylinder is also adjustable permitting a uniform pressure distribution underneath the soft tissue of the buttocks and thighs. Backrest, armrests, seat pan and flooring are highly adjustable and equipped with forces sensors to measure contact forces.
2017-03-28
Technical Paper
2017-01-1397
Alba Fornells, Núria Parera, Adria Ferrer, Anita Fiorentino
Abstract While accident data show a decreasing number of fatalities and serious injuries on European Union (EU) roads, recent data from ERSO (European Road Safety Observatory) show an increasing proportion of elderly in the fatality statistics. Due to the continuous increase of life expectancy in Europe and other highly-developed countries, the elderly make up a higher number of drivers and other road users such as bicyclists and pedestrians whose mobility needs and habits have been changing over recent years. Moreover, due to their greater vulnerability, the elderly are more likely to be seriously injured in any given accident than younger people. With the goal of improving the safety mobility of the elderly, the SENIORS Project, funded by the European Commission, is investigating and assessing the injury reduction that can be achieved through innovative tools and safety systems.
Viewing 1 to 30 of 11101