Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 457
2017-04-21
WIP Standard
ARP1971D
This SAE Aerospace Recommended Practice (ARP) covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing/anti-icing fluid spraying system. The unit shall be highly maneuverable for deicing all exterior surfaces of commercial aircraft, of sizes agreed upon between purchaser and manufacturer, in accordance with SAE ARP4737. The vehicle will also be used for aircraft maintenance and inspection. The vehicle shall be suitable for day and night operations.
2017-04-20
WIP Standard
AMS1428K
This foundation specification (AMS1428J) and its associated category specifications (AMS1428/1 and AMS1428/2) cover three types of deicing/anti-icing fluids, each in the form of a non-Newtonian fluid.
2017-04-18
WIP Standard
AIR7487
Provide an interactive tool that will provide snow and ice control professionals with an ability to estimate the number and type of equipment needed to meet the service levels they deem appropriate to their airline community, airport passengers, regional commitment and operational strategy.
CURRENT
2017-04-06
Standard
J3059_201704
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance.
CURRENT
2017-03-28
Standard
J3102_201703
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of the ambulance substructure, to support the safe mounting of an SAE J3027 compliant litter retention device or system, when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that to a great extent ensure the ambulance substructure meets the same performance criteria across the industry. Prospective manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
CURRENT
2017-03-15
Standard
AIR6172A
This test method provides stakeholders (runway deicing chemical manufacturers, users, regulators and airport authorities) with relative ice undercutting capacity of runway deicing chemicals, by measuring the area of ice undercut pattern as a function of time. Such runway deicing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice undercutting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
CURRENT
2017-03-02
Standard
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
CURRENT
2017-03-02
Standard
AS6858
This is a joint SAE/EUROCAE development. This document will be released as both an SAE Aerospace Specification (AS) and a EUROCAE Minimum Aviation System Performance Standard (MASPS). This document defines the technical requirements for the safe integration of gaseous hydrogen fueled Proton Exchange Membrane (PEM) Fuel Cell Systems (FCS) within the aircraft. Most of the technical concepts and approaches covered by this document represent current industry "best practice". Others require specific approval from the procuring activity before use. This requirement for approval is not intended to prohibit their use; but rather to ensure that the prime contractor has fully investigated their capability to perform reliably and to be sufficiently durable under the required conditions and that the prime contractor can present substantiating evidence for approval before the design is committed to.
CURRENT
2017-03-01
Standard
AMS1428J
This foundation specification (AMS1428J) and its associated category specifications (AMS1428/1 and AMS1428/2) cover three types of deicing/anti-icing fluids, each in the form of a non-Newtonian fluid.
CURRENT
2017-02-21
Standard
AIR6170A
This test method provides stakeholders (runway deicing chemical manufacturers, users, regulators, and airport authorities) with relative ice melting capacity of runway deicing chemicals, by measuring the amount of ice melted as a function of time. Such runway deicing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time ice melting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
CURRENT
2017-02-21
Standard
J2773_201702
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
CURRENT
2017-02-21
Standard
J3074_201702
This procedure establishes a recommended practice for performing a Lumbar Flexion test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar.
2017-02-16
WIP Standard
ARP4737J
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing Methods and procedures to ensure the safe operation of aircraft during icing conditions. This document does not specify requirements for particular airplane models. NOTE: Particular airline or aircraft manufacturers' published manuals, procedures, or methods supplement the information contained in this document.
CURRENT
2017-02-14
Standard
AMS1428/1
The foundation specification (AMS1428J) and the category specifications (AMS1428/1 and AMS1428/2) cover deicing/anti-icing materials in the form of a fluid.
2017-02-11
WIP Standard
AS6286/1A
This document shall be used in conjunction with: AS6286, Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/2, Equipment AS6286/3, Fluids AS6286/4, Weather AS6286/5, Health, Safety and First Aid AS6286/6, Aircraft Deicing/Anti-icing Diagrams, No-Spray-Zones
2017-02-11
WIP Standard
AS6286/2A
This document covers the standards of de-icing/anti-icing equipment. In conjunction with the main document and other related slash sheets it will provide guidelines for the proper procedures to deice and anti-ice aircraft on the ground information to support this training program is provided to make the material a better tool for the preparation and execution of the training & qualification. It is intended to provide a common basis for de-icing/anti-icing training and qualification for de- icing providers and airlines. This material was compiled using various international documents with support from SAE documents and individually contributed editorial comments. Its purpose is to serve as a “Globalized Deicing Training Manual”.
2017-02-11
WIP Standard
AS6286/5A
This document shall be used in conjunction with: AS6286 - Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/1 - Processes including Methods AS6286/2 - Equipment AS6286/3 - Fluids AS6286/4 - Weather AS6286/6 - Aircraft Deicing/Anti-icing Diagrams, No-Spray-Zones
2017-02-11
WIP Standard
AS6286/6A
This document shall be used in conjunction with: - AS6286, Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground - AS6286/1, Processes Including Methods - AS6286/2, Equipment - AS6286/3, Fluids - AS6286/4, Weather - AS6286/5, Health, Safety and First Aid
2017-02-11
WIP Standard
AS6286A
This document establishes the minimum training and qualification requirements for ground based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators and the level and length of training should therefore be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, each hour of classroom training should at least equal the same amount (or include more) of practical training wherever this is relevant. Both basic and recurrent practical training shall be performed and documented periodically.
CURRENT
2017-02-09
Standard
AMS1428/2
The foundation specification (AMS1428J) and the category specifications (AMS1428/1 and AMS1428/2) cover deicing/anti-icing materials in the form of a fluid.
CURRENT
2017-01-18
Standard
J2419_201701
This SAE Recommended Practice describes the test procedures for conducting frontal impact restraint system tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
2017-01-12
WIP Standard
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
2017-01-06
WIP Standard
AS6285A
This document establishes the minimum requirements for ground based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. NOTE: Refer to particular aircraft operator or aircraft manufacturers’ published manuals and procedures. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 and AMS1428 (Type I, II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents.
CURRENT
2017-01-04
Standard
ARP6239
This SAE Aerospace Recommended Practice (ARP) recommends the design and features of aircraft demonstration emergency equipment for use in passenger safety briefings.
CURRENT
2017-01-03
Standard
ARP6852B
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses Icing wind tunnel tests Flight tests Computational fluid dynamics and other numerical analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
2016-12-29
WIP Standard
ARP5718B
This document describes: a. the preparatory steps to test experimental Type II, III, and IV fluids according to AMS1428; b. the recommendations for the preparation of samples for endurance time testing according to ARP5485; c. a short description of the recommended field spray test; d. the protocol to generate draft holdover time guidelines from endurance time data obtained from ARP5485; e. the protocol for inclusion of Type II, III, and IV fluids on the FAA and Transport Canada lists of fluids and the protocol for updating the lists of fluids; f. the role of the SAE G-12 Aircraft Deicing Fluids Committee; g. the role of the SAE G-12 Holdover Time Committee; h. the process for the publication of Type II, III, and IV holdover time guidelines. This document does not describe laboratory testing procedures. This document does not include the qualification process for AMS1424 Type I fluids.
2016-12-12
WIP Standard
AIR6130A
14-day material test to determine the cyclic effects of runway deicing compounds on cadmium plated parts.
CURRENT
2016-12-05
Standard
AS6286/6
This document shall be used in conjunction with: AS6286, Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground AS6286/1, Processes Including Methods AS6286/2, Equipment AS6286/3, Fluids AS6286/4, Weather AS6286/5, Health, Safety and First Aid
CURRENT
2016-12-01
Standard
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
CURRENT
2016-11-29
Standard
AS6286
This document establishes the minimum training and qualification requirements for ground based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators and the level and length of training should therefore be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, each hour of classroom training should at least equal the same amount (or include more) of practical training wherever this is relevant. Both basic and recurrent practical training shall be performed and documented periodically.
Viewing 1 to 30 of 457