Criteria

Display:

Results

Viewing 1 to 30 of 2961
2017-11-07
Technical Paper
2017-36-0080
Edinilson Alves Costa, Rogério Nalin
Abstract Although ignored by most people not directly involved with highway and off-road commercial trucks operation the accumulation of dust and mud on cabin side can become a rather annoying issue. Besides adhering to the passengers clothes dirt contamination may also compromise driver visibility constituting a safety concern. For a truck manufacturer it can revert into quality complaints and negatively influence customers’ future buying decisions. In this context, fascia air deflectors are common devices used in truck industry to control the airflow over the cabin panels and ultimately prevent contamination deposition. This paper presents a methodology to avoid dust and mud accumulation on commercial trucks cabin doors based on the predicted airflow field by computational fluid dynamics (CFD) and a reference flow metric defined through a simple bench test.
2017-11-05
Technical Paper
2017-32-0083
Makoto Hasegawa, Takanobu Kaneko
ISO 26262, an international functional safety standard of electrical and/or electronic systems (E/E systems) for motor vehicles, was published in November 2011 and it is expected that the scope will be extended to motorcycles in a second edition of ISO 26262 going to be published in 2018. ISO/DIS 26262 second edition published in 2016 has Part 12 as a new part in order to apply ISO 26262 to motorcycle. Proper estimation of Exposure, Controllability, and Severity in accordance with ISO/DIS 26262 Part 12, are key factors to determine Motorcycle Safety Integrity Level. To estimate precise these factors, there would be a case that it might not be appropriate to apply studies done for passenger car to motorcycle, and it would be necessary to apply motorcycle specific knowledge and estimation methods. In our previous studies we clarified these motorcycle specific issues and studied the method for the adaptation.
2017-09-23
Technical Paper
2017-01-1998
Shun Yang, Weiwen Deng, Zhenyi Liu, Ying Wang
Abstract Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
2017-09-23
Technical Paper
2017-01-1958
Dongfang Dang
Abstract With the increasing complexity, dynamicity and uncertainty of traffic, motion planning of automatic driving is getting more difficult and challenging. This paper focuses on the real-time motion planning problem of CAVs (connected and automated vehicles) in complex traffic scenarios. To effectively solve this problem, a general driving risk model is presented, which contains the following two essential parts: i) collision risk, i.e., the collision risk between the SV (subject vehicle) and other surrounding vehicles, pedestrians, buildings etc.; ii) non-collision risk, such as violation of traffic regulations, the deviation from the intention of driver, etc. To achieve the real time collision detection, the SV is approximated to a point and its shape is considered by extending the dimension of obstacles considering their relative position and velocity.
2017-09-19
Technical Paper
2017-01-2141
Fengmei Li, Peng Ke
Abstract For the ice protection of the engine air induction part manufactured with low thermal conductivity composite material, the combined heating method using interior impingement and exterior air film has certain advantages. To study the influence of the external jet air film on the impingement characteristics of droplets, the numerical simulation method of three dimensional water droplet impingement based on Eulerian method was developed and verified by experimental data from references. The droplets impingement characteristics under three different blowing ratios and two different velocities were then investigated based on the configuration of 3D cylinder with two parallel jet holes.
2017-09-19
Technical Paper
2017-01-2140
Mario Marchetti, Guillaume Casteran, Celine Jobard, Bruno Saintot, Patrice Bourson, Marc Fontana
Abstract Aircrafts and runways de-icing operations with anti-icing fluids are still the most commonly used methods. In the specific case of aircrafts, they do contain glycols. Nevertheless, since two decades now, major environmental concerns are raised, along with important associated costs. Furthermore, once applied either on aircrafts or on runways, these fluids are diluted because of water brought from adverse weather conditions (rain, snow, icy conditions), conducting to increasing the freezing point from a subzero level to 0°C. The characterization of the freezing points of these fluids is indeed crucial for safety reasons. For years now, Raman spectroscopy is used for the characterization of these fluids, specifically the freezing point. But the presence of dyes did perturb the usual spectroscopic characterization.
2017-09-19
Technical Paper
2017-01-2139
Guy Fortin
Abstract This paper reviews the current knowledge on super-hydrophobic coatings (SHC). Using an ideal super-hydrophobic surface patterned with identical cylindrical flathead posts forming a square network with constant periodicity, models are proposed to explain SHC, wear and ice adherence on SHC. The models demonstrate that SHC based on Cassie-Baxter state improve the bead mobility compared to SHC based on Wenzel state and more suitable for aircraft application. Their erosion resistance can be improved by increasing the post height and the hydrophobic material thickness. Their ice adhesion reduction factor (IARF) is better but SHC based on Cassie-Baxter state have a limitation to reduce ice adherence dependence on the surface pattern and IARF of the hydrophobic material. The bead mobility is calculated from advancing and receding water contact angles (WCA).
2017-09-19
Technical Paper
2017-01-2056
Daniel Aceituna
Abstract The goal behind Functional Safety is to anticipate the potential hazard scenarios (a.k.a. harm sequences) that a system may produce and address those scenarios in such a way as to mitigate or even eliminate them. A major challenge in determining hazard scenarios is trying to assess an adequate amount of scenarios, considering the large size of a hazard space. Typically assessing the entire hazard space is difficult to achieve, resulting in the possibility of overlooking some critical scenarios that can result in harm to either system operators, system by-standers, or both. In this paper we will explore a rule-based approach for concisely describing hazard scenarios, which could potentially enable us to examine the entire hazard space in a short amount of time. Our approach, called Hazard Space Analysis, combines three key activates: determining hazard scenarios, assigning a risk factor to those scenarios, and mapping those hazard scenarios directly to safety rules.
2017-07-10
Technical Paper
2017-28-1932
Ganesh Dharmar, Ravichandrika Bhamidipati, Satheesh Kumar
Abstract Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
2017-07-10
Technical Paper
2017-28-1923
Satish Mudavath, Ganesh Dharmar, Shyam Somani
Abstract Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
2017-06-29
Journal Article
2017-01-9001
Hermann Ferschitz, Michael Wannemacher, Otto Bucek, Florian Knöbel, Wolfgang Breitfuß
Abstract RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012. Following the successful implementation of the icing conditions specified in EASA CS-25 Appendix C, it was expected that the facility could also be used to simulate the SLD conditions required by EASA CS-25 Appendix O. This paper sets forth theoretical considerations concerning the selection of suitable nozzles and their operation in the existing facility. The transport of large droplets through the contraction nozzle was simulated using a CFD program. The results then served as a basis for deriving secondary droplet breakup. The validations carried out confirm the theoretical considerations and identify potential limits and open research questions.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-03-28
Journal Article
2017-01-0178
Mark Hepokoski, Allen Curran, Sam Gullman, David Jacobsson
Abstract Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1675
Genís Mensa, Núria Parera, Alba Fornells
Abstract Nowadays, the use of high-speed digital cameras to acquire relevant information is a standard for all laboratories and facilities working in passive safety crash testing. The recorded information from the cameras is used to develop and improve the design of vehicles in order to make them safer. Measurements such as velocities, accelerations and distances are computed from high-speed images captured during the tests and represent remarkable data for the post-crash analysis. Therefore, having the exact same position of the cameras is a key factor to be able to compare all the values that are extracted from the images of the tests carried out within a long-term passive safety project. However, since working with several customers involves a large amount of different cars and tests, crash facilities have to readapt for every test mode making it difficult for them to reproduce the correct and precise position of the high-speed cameras throughout the same project.
2017-03-28
Journal Article
2017-01-1475
Saeed Barbat, Xiaowei Li
Abstract On December 2015, The National Highway Traffic Safety Administration (NHTSA) published its proposal to implement U.S New Car Assessment Program (NCAP) changes covering three categories of crashworthiness, crash avoidance and pedestrian protection, beginning with the 2019 model year. The crashworthiness category included a new frontal oblique impact (OI) test protocol. The test compromises of a new Oblique Moving Deformable Barrier (OMDB), new THOR 50th percentile male (THOR-50M) anthropomorphic test device (ATD), and a new test configuration. An OMDB of 2,486 kg (5,480 lb) impacts a stationary target vehicle at a speed of 90 kph (56 mph) at an angle of 15 degrees with a 35% barrier overlap with the front end of the target vehicle. In vehicle-to-vehicle collisions, the lighter weight vehicle experience higher velocity change and higher acceleration levels, thereby, occupants in the lighter vehicle experience higher injury risk.
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1380
Richard Young
Abstract Dingus and colleagues recently estimated the crash odds ratios (ORs) for secondary tasks in the Strategic Highway Research Program Phase 2 (SHRP 2) naturalistic driving study. Their OR estimate for hand-held cell phone conversation (Talk) was 2.2, with a 95% confidence interval (CI) from 1.6 to 3.1. This Talk OR estimate is above 1, contrary to previous estimates below 1. A replication discovered two upward biases in their analysis methods. First, for video clips with exposure to a particular secondary task, Dingus and colleagues selected clips not only with exposure to that task, but often with concurrent exposure to other secondary tasks. However, for video clips without exposure to that task, Dingus and colleagues selected video clips without other secondary tasks. Hence, the OR estimate was elevated simply because of an imbalanced selection of video clips, not because of risk from a particular secondary task.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1364
Kashif Ali, Vikas Kumar, Virat Kalra
Abstract Vehicle occupant packaging and interior and exterior body design determine the overall visibility that the driver of the vehicle has. Visibility is also dependent on technological features inside and outside the passenger cell like proximity sensors and cameras etc. The focus of this research is to find and analyze the visibility percentages, blind spot angles and blind spot areas using statistical data both individually and as vehicle class put together in order to justify the need for standardization of basic visibility enhancing aids. This study has an added significance considering the Indian road transportation statistics. On an average, 16 people die every hour due to road accidents in India. The aim is to focus on cases that affect visibility in low speed driving, coasting and reversing that causes loss to public and private property.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Abstract Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
Abstract Collision statistics show that more than half of all pedestrian fatalities caused by vehicles occur at night. The recognition of objects at night is a crucial component in driver responses and in preventing nighttime pedestrian accidents. To investigate the root cause of this fact pattern, Richard Blackwell conducted a series of experiments in the 1950s through 1970s to evaluate whether restricted viewing time can be used as a surrogate for the imperfect information available to drivers at night. The authors build on these findings and incorporate the responses of drivers to objects in the road at night found in the SHRP-2 naturalistic database. A closed road outdoor study and an indoor study were conducted using an automatic shutter system to limit observation time to approximately ¼ of a second. Results from these limited exposure time studies showed a positive correlation to naturalistic responses, providing a validation of the time-limited exposure technique.
2017-03-28
Technical Paper
2017-01-1370
Hiroyuki Hara, Masaaki Kawauchi, Masayuki Katayama, Noriyuki Iwamori
Abstract Driving is an action that depends strongly on visual information. For displays in the cockpit, a combination of “ease of viewing” to inform the driver of danger early and “annoyance reduction” to avoid drops in the driver’s perception is needed. In this study, we tried to capture “ease of viewing” and “annoyance” in one fixed-quantity indicator. We took up a Camera Monitor System (CMS) as the subject and analyzed the effect that annoyance with the display used in CMSs has on driving behavior. Based on our analysis, we hypothesize that evaluating carelessness in viewing behavior is related evaluating to annoyance. Next, we chose a Detection Response Task (DRT) technique as a method to evaluate driving behavior influenced by this annoyance.
2017-03-28
Technical Paper
2017-01-1369
Abtine Tavassoli, Sam Perlmutter, Dung Bui, James Todd, Laurene Milan, David Krauss
Abstract Vision plays a key role in the safe and proper operation of vehicles. To safely navigate, drivers constantly scan their environments, which includes attending to the outside environment as well as the inside of the driver compartment. For example, a driver may monitor various instruments and road signage to ensure that they are traveling at an appropriate speed. Although there has been work done on naturalistic driver gaze behavior, little is known about what information drivers glean while driving. Here, we present a methodology that has been used to build a database that seeks to provide a framework to supply answers to various ongoing questions regarding gaze and driver behavior. We discuss the simultaneous recording of eye-tracking, head rotation kinematics, and vehicle dynamics during naturalistic driving in order to examine driver behavior with a particular focus on how this correlates with gaze behavior.
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Abstract Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
2017-03-28
Journal Article
2017-01-1416
B. Nicholas Ault, Daniel E. Toomey
Abstract Reconstruction of passenger vehicle accidents involving side impacts with narrow objects has traditionally been approached using side stiffness coefficients derived from moveable deformable barrier tests or regression analysis using the maximum crush in available lateral pole impact testing while accounting for vehicle test weight. Current Lateral Impact New Car Assessment Program (LINCAP) testing includes 20 mph oblique lateral pole impacts. This test program often incorporates an instrumented pole so the force between the vehicle and pole at several elevations along the vehicle - pole interface is measured. Force-Displacement (F-D) characteristics of vehicle structures were determined using the measured impact force and calculated vehicle displacement from on-board vehicle instrumentation. The absorbed vehicle energy was calculated from the F-D curves and related to the closing speed between the vehicle and the pole by the vehicle weight.
2017-03-28
Technical Paper
2017-01-1474
Raed E. El-Jawahri, Agnes Kim, Dean Jaradi, Rich Ruthinowski, Kevin Siasoco, Cortney Stancato, Para Weerappuli
Abstract Sled tests simulating full-frontal rigid barrier impact were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on point estimate basis.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
Abstract SAE J211 provides no definitive specification as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for impact data. Accordingly, a 3-2-2-2 array (nine-accelerometer-package or NAP) of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th-percentile-male ATD headform and compared in a variety of impact events and multibody simulations. Appropriate low-pass digital filter cutoff frequencies for differentiating the angular rate sensor data into angular accelerations were sought via residual analysis in accordance with current SAE J211 guidelines.
Viewing 1 to 30 of 2961