Criteria

Display:

Results

Viewing 1 to 30 of 2952
2017-08-29
Journal Article
2017-01-9001
Hermann Ferschitz, Michael Wannemacher, Otto Bucek, Florian Knöbel, Wolfgang Breitfuß
Abstract RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012. Following the successful implementation of the icing conditions specified in EASA CS-25 Appendix C, it was expected that the facility could also be used to simulate the SLD conditions required by EASA CS-25 Appendix O. This paper sets forth theoretical considerations concerning the selection of suitable nozzles and their operation in the existing facility. The transport of large droplets through the contraction nozzle was simulated using a CFD program. The results then served as a basis for deriving secondary droplet breakup. The validations carried out confirm the theoretical considerations and identify potential limits and open research questions.
2017-07-10
Technical Paper
2017-28-1923
Satish Mudavath, Ganesh Dharmar, Shyam Somani
Abstract Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
2017-07-10
Technical Paper
2017-28-1932
Ganesh Dharmar, Ravichandrika Bhamidipati, Satheesh Kumar
Abstract Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
2017-04-11
Journal Article
2017-01-9451
Marouen Hamdi, Drew Manica, Hung-Jue Sue
Abstract Brightness, transparency, and color impact critically the aesthetics of polymeric surfaces. They can significantly change the perception of common damages such as scratch and mar. Particularly, subtle mar damage is more dependent on surface perceptual properties. In this study, we investigate the impact of these attributes on scratch and mar visibility resistance of commercialized polymeric model systems frequently used in automotive industry. Twenty subjects were involved in a psychophysical test based on pairwise comparison, and results were treated using multidimensional scaling (MDS) analysis. A tied ordinal weighted Euclidian MDS model was used to visualize the relational structures of mar perception space. Results show that scratch visibility resistance tends to decrease with dark, more transparent, and green surfaces. Mar perception was reasonably conceptualized by a two-dimensional MDS space.
2017-03-28
Journal Article
2017-01-0378
Yuta Imanami, Kunikazu Tomita, Kazuaki Fukuoka, Kimihiro Nishimura
Abstract In order to develop a new carburizing steel material that realizes an intermediate heat treatment-free process in parts manufacturing, the cold forgeability of the as-rolled steel and suppression of abnormal grain growth of austenite were studied. It was shown that adjustment of addition amount of Si, Mn and Cr, suppression of dynamic strain aging during cold forging, and an increase of ferrite fraction by controlled rolling contribute to the reduction of deformation resistance. However, Nb precipitation control by fully utilizing mill manufacturing processes was also necessary for suppression of abnormal grain growth of austenite. A new steel for carburizing was developed by integrating these technologies, making it possible to eliminate annealing before cold forging and normalizing before carburizing simultaneously. Thus, the developed steel is an important innovation in the parts manufacturing process.
2017-03-28
Journal Article
2017-01-0379
Tau Tyan, Leonard Shaner, Matt Niesluchowski, Nand Kochhar, Dilip Bhalsod, Jason Wang
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
2017-03-28
Technical Paper
2017-01-0377
Peter Shery, William Altenhof, Ryan Smith, Elmar Beeh, Philipp Strassburger, Thomas Gruenheid
Abstract Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
2017-03-28
Technical Paper
2017-01-0373
Fabian Jorg Uwe Koark, Christian Beul
Abstract Achieving functional safety in mechatronic systems with growing product functionality is a major challenge in systems engineering. Following the current discussion, this challenge is mostly allocated to electronics and software development. For most of the scenarios this focus is feasible. Product design - the construction of the product - defines the properties and the appearance of the product by shape, material and assembly. So, the product design is often not under control of the safety management system. A hazardous deviation of part shape can be easily identified after the parts product or at least at its mounting. A wrong assembly is controlled by assembly documentation or data (e.g. screw torques) and identified at end of assembly line checks. The identification of a hazardous material choice depends on the product material class. Product materials can be separated into two classes: passive or active materials.
2017-03-28
Technical Paper
2017-01-0361
Amar Marpu, George Garfinkel, Patrick Maguire
Abstract Modeling of High Voltage (HV) wires is an important aspect of vehicle safety simulations for electrified powertrains to understand the potential tearing of the wire sheath or pinching of HV wiring. The behavior of the HV wires must be reviewed in safety simulations to identify potential hazards associated with HV wire being exposed, severed, or in contact with ground planes during a crash event. Modeling HV wire is challenging due to the complexity of the physical composition of the wire, which is usually comprised of multiple strands bundled and often twisted together to form the HV electrical conductor. This is further complicated by the existence of external insulating sheathing materials to prevent HV exposure during normal operating conditions. This paper describes a proposed method to model and characterize different types of HV wires for usage in component- and vehicle-level safety models.
2017-03-28
Journal Article
2017-01-0368
Ying Zhao, Fangwu Ma, Longfan Yang, Yueqiang Wang, Hongyu Liang
Abstract The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
2017-03-28
Journal Article
2017-01-0367
Yueqian Jia, Yu-wei Wang, Yuanli Bai
Abstract A fully modularized framework was established to combine isotropic, kinematic, and cross hardening behaviors under non-monotonic loading conditions for advanced high strength steels. Experiments under the following types of non-proportional loading conditions were conducted, 1) uniaxial tension-compression-tension/compression-tension-compression full cycle reversal loading, 2) uniaxial reversal loading with multiple cycles, and 3) reversal shear. The calibrated new model is decoupled between isotropic and kinematic hardening behaviors, and independent on both anisotropic yield criterion and fracture model. Nine materials were calibrated using the model, include: DP590, DP600, DP780, TRIP780, DP980LY, QP980, AK Steel DP980, TBF1180, and AK Steel DP1180. Good correlation was observed between experimental and modeled results.
2017-03-28
Journal Article
2017-01-0365
Kentaro Sato, Takayuki Futatsuka, Jiro Hiramoto, Kei Nagasaka, Akira Akita, Takeshi Kashiyama
Abstract A simple testing method is proposed in order to investigate ductile fracture in crashed automotive components made from advanced high strength steels. This type of fracture is prone to occur at spot-welded joints and flange edges. It is well known that the heat affected zone (HAZ) is a weak point in high strength steel due to the formation of annealed material around the spot-welded nugget, and the flange edge also has low ductility due to the damage caused by shearing. The proposed method is designed to simulate a ductile fracture which initiates from a spot-welded portion or a sheared edge in automotive components which are deformed in a crash event. Automotive steel sheets with a wide range of tensile strengths from 590MPa to 1470MPa are examined in order to investigate the effect of material strength on fracture behavior. The effects of material cutting methods, namely, machining and shearing, are also investigated.
2017-03-28
Technical Paper
2017-01-0085
Wanyang Xia, Yahui Wu, Gangfeng Tan, Xianyao Ping, Benlong Liu
Abstract Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Abstract Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
Abstract With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-0031
Mohamed Benmimoun
Abstract In the last years various advanced driver assistance systems (ADAS) have been introduced on the market. More highly advanced functions up to automated driving functions are currently under research. By means of these functions partly automated driving in specific situations is already or will be realized soon, e.g. traffic jam assist. Besides the technical challenges to develop such automated driving functions for complex situations, e.g. construction or intersection areas, new approaches for the evaluation of these functions under different driving conditions are necessary, in order to assess the benefits and identify potential weaknesses. Classical approaches for evaluation and market sign off will require an extensive testing, which results in high costs and time demands. Therefore the classical approaches are hardly feasible taking into account higher levels of support and automation. Today the final sign-off requires a high amount of real world tests.
2017-03-28
Technical Paper
2017-01-1675
Genís Mensa, Núria Parera, Alba Fornells
Abstract Nowadays, the use of high-speed digital cameras to acquire relevant information is a standard for all laboratories and facilities working in passive safety crash testing. The recorded information from the cameras is used to develop and improve the design of vehicles in order to make them safer. Measurements such as velocities, accelerations and distances are computed from high-speed images captured during the tests and represent remarkable data for the post-crash analysis. Therefore, having the exact same position of the cameras is a key factor to be able to compare all the values that are extracted from the images of the tests carried out within a long-term passive safety project. However, since working with several customers involves a large amount of different cars and tests, crash facilities have to readapt for every test mode making it difficult for them to reproduce the correct and precise position of the high-speed cameras throughout the same project.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Abstract Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-1370
Hiroyuki Hara, Masaaki Kawauchi, Masayuki Katayama, Noriyuki Iwamori
Abstract Driving is an action that depends strongly on visual information. For displays in the cockpit, a combination of “ease of viewing” to inform the driver of danger early and “annoyance reduction” to avoid drops in the driver’s perception is needed. In this study, we tried to capture “ease of viewing” and “annoyance” in one fixed-quantity indicator. We took up a Camera Monitor System (CMS) as the subject and analyzed the effect that annoyance with the display used in CMSs has on driving behavior. Based on our analysis, we hypothesize that evaluating carelessness in viewing behavior is related evaluating to annoyance. Next, we chose a Detection Response Task (DRT) technique as a method to evaluate driving behavior influenced by this annoyance.
2017-03-28
Technical Paper
2017-01-1369
Abtine Tavassoli, Sam Perlmutter, Dung Bui, James Todd, Laurene Milan, David Krauss
Abstract Vision plays a key role in the safe and proper operation of vehicles. To safely navigate, drivers constantly scan their environments, which includes attending to the outside environment as well as the inside of the driver compartment. For example, a driver may monitor various instruments and road signage to ensure that they are traveling at an appropriate speed. Although there has been work done on naturalistic driver gaze behavior, little is known about what information drivers glean while driving. Here, we present a methodology that has been used to build a database that seeks to provide a framework to supply answers to various ongoing questions regarding gaze and driver behavior. We discuss the simultaneous recording of eye-tracking, head rotation kinematics, and vehicle dynamics during naturalistic driving in order to examine driver behavior with a particular focus on how this correlates with gaze behavior.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1364
Kashif Ali, Vikas Kumar, Virat Kalra
Abstract Vehicle occupant packaging and interior and exterior body design determine the overall visibility that the driver of the vehicle has. Visibility is also dependent on technological features inside and outside the passenger cell like proximity sensors and cameras etc. The focus of this research is to find and analyze the visibility percentages, blind spot angles and blind spot areas using statistical data both individually and as vehicle class put together in order to justify the need for standardization of basic visibility enhancing aids. This study has an added significance considering the Indian road transportation statistics. On an average, 16 people die every hour due to road accidents in India. The aim is to focus on cases that affect visibility in low speed driving, coasting and reversing that causes loss to public and private property.
2017-03-28
Technical Paper
2017-01-1368
Jeffrey Aaron Suway, Steven Suway
Abstract Mapping the luminance values of a visual scene is of broad interest to accident reconstructionists, human factors professionals, and lighting experts. Such mappings are useful for a variety of purposes, including determining the effectiveness and appropriateness of lighting installations, and performing visibility analyses for accident case studies. One of the most common methods for mapping luminance is to use a spot type luminance meter. This requires individual measurements of all objects of interest and can be extremely time consuming. Luminance cameras can also be used to create a luminance map. While luminance cameras will map a scene’s luminance values more quickly than a spot luminance meter, commercially available luminance cameras typically require long capture times during low illuminance (up to 30 seconds). Previous work has shown that pixel intensity captured by consumer-grade digital still cameras can be calibrated to measure luminance.
2017-03-28
Technical Paper
2017-01-1366
Jeffrey Muttart, Swaroop Dinakar, Jeffrey Suway, Michael Kuzel, Timothy Maloney, Wayne Biever, Toby Terpstra, Tilo Voitel, David Cavanaugh, T.J. Harms
Abstract Collision statistics show that more than half of all pedestrian fatalities caused by vehicles occur at night. The recognition of objects at night is a crucial component in driver responses and in preventing nighttime pedestrian accidents. To investigate the root cause of this fact pattern, Richard Blackwell conducted a series of experiments in the 1950s through 1970s to evaluate whether restricted viewing time can be used as a surrogate for the imperfect information available to drivers at night. The authors build on these findings and incorporate the responses of drivers to objects in the road at night found in the SHRP-2 naturalistic database. A closed road outdoor study and an indoor study were conducted using an automatic shutter system to limit observation time to approximately ¼ of a second. Results from these limited exposure time studies showed a positive correlation to naturalistic responses, providing a validation of the time-limited exposure technique.
2017-03-28
Technical Paper
2017-01-1380
Richard Young
Abstract Dingus and colleagues recently estimated the crash odds ratios (ORs) for secondary tasks in the Strategic Highway Research Program Phase 2 (SHRP 2) naturalistic driving study. Their OR estimate for hand-held cell phone conversation (Talk) was 2.2, with a 95% confidence interval (CI) from 1.6 to 3.1. This Talk OR estimate is above 1, contrary to previous estimates below 1. A replication discovered two upward biases in their analysis methods. First, for video clips with exposure to a particular secondary task, Dingus and colleagues selected clips not only with exposure to that task, but often with concurrent exposure to other secondary tasks. However, for video clips without exposure to that task, Dingus and colleagues selected video clips without other secondary tasks. Hence, the OR estimate was elevated simply because of an imbalanced selection of video clips, not because of risk from a particular secondary task.
2017-03-28
Technical Paper
2017-01-1417
Enrique Bonugli, Richard Watson, Mark Freund, Jeffrey Wirth
Abstract This paper reports on seventy additional tests conducted using a mechanical device described by Bonugli et al. [4]. The method utilized quasi-static loading of bumper systems and other vehicle components to measure their force-deflection properties. Corridors on the force-deflection plots, for various vehicle combinations, were determined in order to define the system stiffness of the combined vehicle components. Loading path and peak force measurements can then be used to evaluate the impact severity for low speed collisions in terms of delta-v and acceleration. The additional tests refine the stiffness corridors, previously published, which cover a wide range of vehicle types and impact configurations. The compression phase of a low speed collision can be modeled as a spring that is defined by the force-deflection corridors. This is followed by a linear rebound phase based on published restitution values [1,5].
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Abstract Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Viewing 1 to 30 of 2952