Display:

Results

Viewing 1 to 30 of 352
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure of a passenger car meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, the goal of design would be to find an optimum solution that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1495
Motomi Iyoda, Tom Trisdale, Rini Sherony, Daniel Mikat, William Rose
EDR (Event Data Recorder) is a function of recording vehicle status at the timing of accident. Toyota introduced EDR from August 2000 one after the other. Now about 70% of Toyota vehicles in North America have EDR. This is more than about 50% EDR coverage of all vehicles in North America. There is EDR regulation in USA, so we record EDR data based on the regulation. We think this is the minimum requirement and we record additional necessary data required from accident reconstruction. They are, (1) additional pre-crash data, (2) additional side crash recording system, (3) roll over recording system, (4) pedestrian protection PUH (Pop Up Hood) recording system, (5) non-crash triggered recording system VCH (Vehicle Control History), etc. Commercially available tool is necessary for EDR data retrieval, based on the regulation in USA. So we adopted BOSCH CDR (Crash Data Retrieval). All Toyota EDR can be retrieved using CDR for all over the world including North America.
2016-04-05
Technical Paper
2016-01-0050
Huafeng Yu, Chung-Wei Lin, BaekGyu Kim
Modern vehicles can have millions of lines of software, for vehicle control, infotainment, etc. The quality and correctness of the software play a key role in the safety of whole vehicle. In order to assure the safety, engineers give an effort to prove correctness of individual subsystems or their integration using testing or verification methods. One needs to eventually certify that the developed vehicle as a whole is indeed safe using the artifacts and evidences produced throughout the development cycle. Such a certification process helps to increase the safety confidence of the developed software and reduce OEM’s liability. However, software certification in automotive domain is not yet well established, compared to other safety-critical domains, such as medical devices and avionics. At the same time, safety-relevant standards and techniques, including ISO 26262 and assurance case, have been well adopted.
2016-02-01
Technical Paper
2016-28-0166
SriRamaChandraMurthy Batchu
Primary function of the inverter in an Electric or Hybrid Electric vehicle (EV/HEV) is to generate required AC voltage from high voltage battery to drive Electrical machine (EM). Being part of power-train of the vehicle, inverters (or hybrid control units (HCU)) are safety related electronic control units (ECU) due to the severity of the accidents/incidents that could result if the ECU is not functional as intended. Therefore it is necessary to develop the inverter in accordance with applicable safety standards. The standard ISO 26262 in particular addresses the complete development cycle of safety related automotive products. OEMs now mandate the strict adherence to ISO26262 standard for such ECUs. This paper describes how safety principles are realized in the hardware modules of inverter, which are responsible for the functional safety adherence.
2016-02-01
Technical Paper
2016-28-0210
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-02-01
Technical Paper
2016-28-0250
Kamlesh Yadav, Ruhi Thakur
Abstract Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
2016-02-01
Technical Paper
2016-28-0244
Kumaraswamy Udugu, Viswanatha Reddy Saddala, Sridhar Lingan
Abstract Traffic injuries are an important public health issue. To prevent these injuries, safety systems in a vehicle are recognized as valuable tools. These safety systems are active before and during a crash event. Passive safety is one such safety tool which comprises of occupant restraint systems to prevent fatal injuries during an event of a crash. To improve the real life safety further, active safety systems plays an important role in mitigating the real world accidents. Moreover, effective integration of active and passive safety systems has a potential to further reduce car occupant fatalities. However, in the recent developments in India towards road safety, vehicle safety standards are oriented more towards passive safety. In the present work, road accidents data from India between 2005 and 2014 are studied, to estimate the major mode of accidents and factors influencing the fatal injuries.
2016-02-01
Technical Paper
2016-28-0251
Kantilal Patil, Siva Reddy, Nadeem Zafar
Abstract In the event of a frontal car crash, occupant sitting in a car meets various types of injuries like Head injury, Chest compression, Neck injury etc. These injuries may lead to the death of an occupant if exceeded beyond biomechanical limits. Seat belt is a primary restraint system, which when worn controls the motion of occupant sitting inside the car during the event of a car crash. An Anchorage location of three point seat belt system has significant effect on occupant injuries during the crash event. By changing the mount locations of a seat belt anchor points i.e. D-ring, Anchor & Buckle, performance of seatbelt system can be enhanced further thereby reducing occupant injuries to certain extent. As per regulation AIS015, locations of safety belt anchorage points should be within prescribed zone.
2015-12-01
Magazine
Uncertainty quantification The technique is a must for next-generation simulation tools. Oil-pump sizing Researchers from Hinduja Tech investigate options for low friction and power consumption. The future of Indian commercial aviation The growth in traffic that airport modernization has supported has also made a significant contribution to the local and national economies, while the improved infrastructure has been positive for the perception of India in the global market. Driving EVs toward lower cost The race ison to reduce battery and electric-drive systems cost while improving efficiency. Powering on Rolls-Royce's Chief Engineer discusses new technologies that inspire current R&D design and evaluation work as part of its strategic roadmap for future big commercial programs. HMIs extend beyond the cab Telematic functions are being integrated into multi-function user interfaces.
2015-11-17
Technical Paper
2015-32-0746
Maki Kawakoshi, Takashi Kobayashi, Makoto Hasegawa
Controllability (C class) represents the level of the ability to avoid harm and is one of the parameters that determine the Automotive Safety Integrity Level in the ISO 26262 functional safety standard, which applies to the electrical and/or electronic systems. This study aimed to consider an appropriate C class evaluation technique for expert riders in applying ISO 26262 to motorcycles. This study attempted to show a C class evaluation method without deviation by the riders and presented examples of the evaluation of three hazardous events in actual vehicle tests. In addition, riders' comments regarding their understanding of the circumstances that resulted in the evaluation were collected, and the correspondence of these comments was examined. We selected “unintended acceleration” or “unintended deceleration” due to the malfunction of the electronic throttle control system as hazard examples and conducted tests to reproduce hazardous events.
2015-11-17
Journal Article
2015-32-0794
Sei Takahashi, Hideo Nakamura, Makoto Hasegawa
ISO 26262, a functional safety standard for motor vehicles, was published in November 2011. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply automotive safety integrity levels (ASILs) to motorcycles because the situation of usage in practice presumably differs between motorcycles and motor vehicles. In our previous study, we newly defined safety integrity levels for motorcycles (MSILs) and proposed that the levels of MSILs should correspond to levels one step lower than those of ASILs; however, we did not investigate the validity of their connections. Accordingly, in this research, we validated the connections. We defined the difference of levels of SILs between motorcycles and motor vehicles as the difference of target values of random hardware failure rates specified in ISO 26262-5.
2015-10-28
Standard
J1373_201510
This SAE Recommended Practice provides test procedures, requirements, and guidelines for rear cornering lamps for use on vehicles less than 9.1 m in overall length.
2015-10-07
Magazine
HMIs extend beyond the cab Telematics functions are being integrated into multi-function user interfaces. Standards step forward in design of off-highway electronics Functional safety standards are starting to impact many development projects, while the auto industry's AUTOSAR standard is being deployed to help enable software reuse and simplify designs. Leveraging automotive lightweighting techniques to improve off-highway emissions Where systems engineers can gain efficiencies in off-highway equipment is agnostic, they'll take it anywhere, and so they should, but one of the ways, often underestimated, is through the use of strong and lightweight advanced materials. Waste heat recovery for the long haul A WHR system based on an organic Rankine cycle has been developed for a long-haul Iveco Stralis truck.
2015-09-29
Technical Paper
2015-01-2832
Keith Friedman, John Hutchinson, Khahn Bui, Matthew Stephens, Alyssa Schmidt
Abstract The incidence of fire in heavy trucks has been shown to be about ten times higher under crash conditions than occurs in passenger vehicles. Fuel tank protection testing defined in SAE standard J703 was originally issued in 1954 and presently echoes federal regulations codified in 49 CFR 393. These tests do not reflect dynamic impact conditions representative of those that can be expected by heavy trucks on the road today. Advanced virtual testing of current and alternative fuel tank designs and locations under example impact conditions is reported. Virtual testing methods can model vehicle to vehicle and vehicle to fixed object impacts. These results can then be utilized to evaluate and refine fuel tank protection system design approaches.
2015-07-08
Standard
J1133_201507
This document provides design guidelines, test procedure references, and performance requirements for stop arm lamp devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading.
2015-07-08
Standard
J887_201507
This document provides design guidelines, test procedure references, and performance requirements for red and yellow overhead warning devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading.
2015-06-12
Standard
AS9014A
These requirements are applicable to IAQG sector schemes when making use of ABs, CRBs and their auditors, for the assessment and certification/registration of supplier quality systems in accordance with the requirements of this document. The quality management system standard used by the CRB shall be 9100/9110/9120, as appropriate to the supplier's activities. It shall be applied to the supplier's complete Quality System that covers aerospace products. Sectors may use these requirements for other standards. IAQG members have committed to recognize the equivalence of certification/registration of a suppliers quality management system to either of the AS, EN or JISQ/SJAC standards. This AS provides the approval process for Auditor Authentication Bodies (AAB), training course providers, trainers and auditors who meet the requirements of AIR5493 and outlines the America's sector specific process to implement AS9104. This document is created to be in conformance with AS9104.
2015-04-30
WIP Standard
J3098
This SAE Recommended Practice applies to illuminated devices installed on the front exterior of motor vehicles that are intended only to be decorative in nature. This Recommended Practice provides guidelines for the installation, activation, performance, and test procedures of decorative illuminated devices installed on the front exterior of motor vehicles.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Journal Article
2015-01-1481
Myles Wilson, David Aylor, David Zuby, Joseph Nolan
Abstract The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
2015-04-14
Technical Paper
2015-01-1430
Brian Gilbert, Joseph McCarthy, Ron Jadischke
Abstract The analysis and modeling of vehicle crush in accident reconstruction has traditionally been based upon the use of linear, crush-based, stiffness coefficients. Recent advances have allowed for the calculation and implementation of non-linear crush coefficients in the accident reconstruction software Human-Vehicle-Environment (HVE) by Engineering Dynamics Corporation (EDC). HVE contains the collision algorithm called DyMESH (DYnamic MEchanical SHell), which is capable of using the non-linear coefficients. These non-linear coefficients have shown to increase the accuracy of a predicted crash pulse. Published research on non-linear crush coefficients for the use in HVE has been limited to frontal impacts. Calculating side stiffness coefficients is more complex since most side impact crash tests involve two vehicles that can crush and absorb impact energy.
2015-04-14
WIP Standard
J2938
This SAE Recommended Practice provides test procedures, requirements, and guidelines for the methods of the measurement of lumen maintenance of LED devices (packages, arrays and modules). This document does not provide guidance or make any recommendation regarding predictive estimations or extrapolation for lumen maintenance beyond the limits of the lumen maintenance determined from actual measurements.
2015-04-14
Technical Paper
2015-01-0571
Andreas Teibinger, Christian Mayer, Ernö Dux, Gian Antonio D’Addetta, Peter Luttenberger, Jac Wismans, Rémy Willinger
Abstract In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
2015-04-14
Technical Paper
2015-01-0275
Gokul Krithivasan, William Taylor, Jody Nelson
Abstract In ISO 26262, the top-level safety goals are derived using the Hazard Analysis and Risk Assessment. Functional safety requirements (FSRs) are then derived from these safety goals in the concept phase (ISO 26262-3:2011). The standard does not call out a specific method to develop these FSRs from safety goals. However, ISO 26262-8:2011, Clause 6, does establish requirements to ensure consistent management and correct specification of safety requirements with respect to their attributes and characteristics throughout the safety lifecycle. Hence, there are expectations on the part of system engineers to bridge this gap. The method proposed in this paper utilizes concepts from process modeling to ensure the completeness of these requirements, eliminate any external inconsistencies between them and improve verifiability.
2015-04-14
Technical Paper
2015-01-0273
Helmut Martin, Martin Krammer, Bernhard Winkler, Christian Schwarzl
Abstract Although the ISO 26262 provides requirements and recommendations for an automotive functional safety lifecycle, practical guidance on how to handle these safety activities and safety artifacts is still lacking. This paper provides an overview of a semi-formal safety engineering approach based on SysML for specifying the relevant safety artifacts in the concept phase. Using specific diagram types, different views of the available data can be provided that reflects the specific needs of the stakeholders involved. One objective of this work is to improve the common understanding of the relevant safety aspects during the system design. The approach, which is demonstrated here from the perspective of a Tier1 supplier for an automotive battery system, covers different breakdown levels of a vehicle. The safety workflow presented here supports engineers' efforts to meet the safety standard ISO 26262 in a systematic way.
2015-04-14
Technical Paper
2015-01-0267
Ryoichi Inada, Teppei Hirotsu, Yasushi Morita, Takahiro Hata
Abstract The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
2015-04-14
Journal Article
2015-01-0156
Alexandr Murashkin, Luis Silva Azevedo, Jianmei Guo, Edward Zulkoski, Jia Hui Liang, Krzysztof Czarnecki, David Parker
Abstract The number of software-intensive and complex electronic automotive systems is continuously increasing. Many of these systems are safety-critical and pose growing safety-related concerns. ISO 26262 is the automotive functional safety standard developed for the passenger car industry. It provides guidelines to reduce and control the risk associated with safety-critical systems that include electric and (programmable) electronic parts. The standard uses the concept of Automotive Safety Integrity Levels (ASILs) to decompose and allocate safety requirements of different stringencies to the elements of a system architecture in a top-down manner: ASILs are assigned to system-level hazards, and then they are iteratively decomposed and allocated to relevant subsystems and components. ASIL decomposition rules may give rise to multiple alternative allocations, leading to an optimization problem of finding the cost-optimal allocations.
2015-04-14
Technical Paper
2015-01-1429
Jeffrey Aaron Suway, Judson Welcher
Abstract Federal Motor Vehicle Safety Standard (FMVSS) No. 108 has minimum performance requirements for retroreflective tape at different entrance and observation angles. In the author's preliminary research, all DOT-C2 retroreflective tape on the market is advertised as meeting and exceeding FMVSS No. 108 requirements. The authors' literature review revealed that there have been no publications quantifying the performance of commercially available DOT-C2 retroreflective tape across a wide range of entrance and observation angles. Therefore, without additional study, an accident reconstruction expert cannot know exactly how a specific type of compliant tape may perform, beyond the minimum federal requirements. In an attempt to solve this issue, the authors have quantified the performance of different types of retroreflective tape with a retroreflectometer.
Viewing 1 to 30 of 352

Filter