Criteria

Text:
Display:

Results

Viewing 1 to 30 of 53
2017-09-23
Technical Paper
2017-01-1958
Dongfang Dang
Abstract With the increasing complexity, dynamicity and uncertainty of traffic, motion planning of automatic driving is getting more difficult and challenging. This paper focuses on the real-time motion planning problem of CAVs (connected and automated vehicles) in complex traffic scenarios. To effectively solve this problem, a general driving risk model is presented, which contains the following two essential parts: i) collision risk, i.e., the collision risk between the SV (subject vehicle) and other surrounding vehicles, pedestrians, buildings etc.; ii) non-collision risk, such as violation of traffic regulations, the deviation from the intention of driver, etc. To achieve the real time collision detection, the SV is approximated to a point and its shape is considered by extending the dimension of obstacles considering their relative position and velocity.
2017-09-19
Technical Paper
2017-01-2056
Daniel Aceituna
Abstract The goal behind Functional Safety is to anticipate the potential hazard scenarios (a.k.a. harm sequences) that a system may produce and address those scenarios in such a way as to mitigate or even eliminate them. A major challenge in determining hazard scenarios is trying to assess an adequate amount of scenarios, considering the large size of a hazard space. Typically assessing the entire hazard space is difficult to achieve, resulting in the possibility of overlooking some critical scenarios that can result in harm to either system operators, system by-standers, or both. In this paper we will explore a rule-based approach for concisely describing hazard scenarios, which could potentially enable us to examine the entire hazard space in a short amount of time. Our approach, called Hazard Space Analysis, combines three key activates: determining hazard scenarios, assigning a risk factor to those scenarios, and mapping those hazard scenarios directly to safety rules.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Abstract Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-0061
Sultan A.M Alkhteeb, Shigeru Oho, Yuki Nagashima, Seisuke Nishimura, Hiroyuki Shimizu
Abstract Lightning strikes on automobiles are usually rare, though they can be fatal to occupants and hazardous to electronic control systems. Vehicles’ metal bodies are normally considered to be an effective shield against lightning. Modern body designs, however, often have wide window openings, and plastic body parts have become popular. Lightning can enter the cabin of vehicles through their radio antennas. In the near future, automobiles may be integrated into the electric power grid, which will cause issues related to the smart grid and the vehicle-to-grid concept. Even today, electric vehicles (EVs) and plug-in hybrid vehicles (PHEVs) are charged at home or in parking lots. Such automobiles are no longer isolated from the power grid and thus are subject to electric surges caused by lightning strikes on the power grid.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Technical Paper
2017-01-1380
Richard Young
Abstract Dingus and colleagues recently estimated the crash odds ratios (ORs) for secondary tasks in the Strategic Highway Research Program Phase 2 (SHRP 2) naturalistic driving study. Their OR estimate for hand-held cell phone conversation (Talk) was 2.2, with a 95% confidence interval (CI) from 1.6 to 3.1. This Talk OR estimate is above 1, contrary to previous estimates below 1. A replication discovered two upward biases in their analysis methods. First, for video clips with exposure to a particular secondary task, Dingus and colleagues selected clips not only with exposure to that task, but often with concurrent exposure to other secondary tasks. However, for video clips without exposure to that task, Dingus and colleagues selected video clips without other secondary tasks. Hence, the OR estimate was elevated simply because of an imbalanced selection of video clips, not because of risk from a particular secondary task.
2017-01-10
Technical Paper
2017-26-0130
Hemant P. Urdhwareshe
Abstract In the recent times, there have been number of cases of failure to pass the COP tests. When a vehicle fails a COP test, it is very embarrassing and expensive for the manufacturer as there is a loss of faith by the society and consumers. It is also painful for the certification agency as well as government. In this context, it is important to quantify and minimize the risk associated with these tests for manufacturers as well as certification agencies. The sampling plan specified in MoRTH / CMVR / TAP-115 is designed to quickly pass vehicles which have very low emissions and quickly reject (fail) vehicles having higher emissions compared to the specified limit. These sampling plans can be classified under Probability Ratio Sequential Tests (PRST).
2016-11-08
Journal Article
2016-32-0058
Makoto Hasegawa, Takanobu Kaneko
Abstract ISO 26262, an international functional safety standard of electrical and/or electronic systems (E/E systems) for motor vehicles, was published in November 2011 and it is expected that the scope will be extended to motorcycles in a second edition of ISO 26262 going to be published in 2018. In order to apply ISO 26262 to motorcycle, proper estimation of Exposure, Controllability, and Severity are key factors to determine Motorcycle Safety Integrity Level (MSIL). Exposure is a factor to indicate the probability of the state of an operational situation that can be hazardous with the E/E system malfunction. And it is not easy to estimate the motorcycle Exposure due to less availability of back ground data in actual operational situation compared to motor vehicle. Therefore real traffic situation should be investigated in order to provide rationales for MSIL determination.
2016-11-07
Technical Paper
2016-22-0016
Annette L. Irwin, Greg Crawford, David Gorman, Sikui Wang, Harold J. Mertz
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
2016-11-07
Technical Paper
2016-22-0012
Tony R. Laituri, Scott Henry, Kevin Pline, Guosong Li, Michael Frankstein, Para Weerappuli
The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidate-predictor-variable assessments were conducted. Part 1 pertained to the derivation.
2016-11-07
Technical Paper
2016-22-0001
Harold J. Mertz, Priya Prasad, Dainius J. Dalmotas, Annette L. Irwin
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
2016-09-20
Technical Paper
2016-01-2043
Richard C. Millar, Thomas Mazzuchi, Haflidi Jonsson
Abstract The SPA-10 project, sponsored by U.S. National Science Foundation, is to acquire and qualify a replacement for the retired T-28 “storm penetration” aircraft previously used to acquire meteorological data to enable understanding and modelling of mid-continent thunderstorms. The National Science Foundation selected the Fairchild A-10 (bailed from the U.S. Air Force) as the platform to be adapted to perform the storm penetration mission to altitudes of eleven kilometers, and funded Naval Postgraduate School’s Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) as prime contractor. An expert panel conducted a review of the SPA-10 project in 2014 and recommended a risk analysis addressing hazards to the aircraft and pilots, such as icing, hail, turbulence and lightning. This paper presents the results of the risk analysis performed in response to this need, including recommended mitigations.
2016-04-05
Technical Paper
2016-01-1451
Mingyang Chen, Xichan Zhu, Zhixiong Ma, Lin Li
Abstract In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
2016-04-05
Technical Paper
2016-01-0095
Qiao Fengying, Vincenzo Sacco, Gilles Delorme, Yevheniy Soloshenko
Abstract In this work, we analyze the use of the Local Interconnect Network (LIN) bus (and some of its potential variants) as Safety Element out of Context (SEooC) from an ISO-26262 perspective and provide the reader with an analysis methodology to compare between a range of different LIN protocol configurations and benchmark them against Automotive Safety Integrity Level (ASIL) targets as defined in ISO-26262. A methodology for a quantitative residual failure probability analysis is shown before applying it to the standard LIN protocol. The residual failure rate in time (RF) of LIN (compliant with ISO26262) has been investigated with a range of reasonable application assumptions. This paper shows that a high bit error probability assumption of 3e-5 yields an RF of 3e-4/h which is too high to satisfy the assumed ASIL-B target (1e-7/h) or higher functional safety requirements in noisy application.
2016-04-05
Journal Article
2016-01-0316
Dorin Drignei, Zissimos Mourelatos, Ervisa Kosova, Jingwen Hu, Matthew Reed, Jonathan Rupp, Rebekah Gruber, Risa Scherer
Abstract We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
2016-04-05
Technical Paper
2016-01-0046
Markus Ernst, Mario Hirz, Jurgen Fabian
Abstract A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
2016-03-27
Technical Paper
2016-01-1738
Natt Winitthumkul, Peerapat Phondeenana, Nuksit Noomwongs
Abstract According to the recent study, Thailand has the 2nd most dangerous road in the world. Based on many researches, the driver is the main influencers of the traffic fatalities. Since the more dangerous the driver drive, the more chance of accident become. Therefore, driver’s monitoring system become one of the solutions that acceptable and reliable, especially for fleet management and public transportation. This paper’s goal is to find an algorithm that can distinguish driving behaviour based on cars’ acceleration and velocity, calling it as Risk Driving Score (RDS). The algorithm was tested by driving test by volunteers on highways with observers, who were told to rank the drivers in terms of driving risk from the 1-5 point. Meanwhile, the drivers were asked to drive in 3 different styles, normal, safety, and hurry. All drives were recorded by satellite and video data then filtered and used for the algorithm calculation.
2015-11-09
Technical Paper
2015-22-0006
Tony R. Laituri, Scott Henry, Raed El-Jawahri, Nirmal Muralidharan, Guosong Li, Marvin Nutt
A provisional, age-dependent thoracic risk equation (or, “risk curve”) was derived to estimate moderate-to-fatal injury potential (AIS2+), pertaining to men with responses gaged by the advanced mid-sized male test dummy (THOR50). The derivation involved two distinct data sources: cases from real-world crashes (e.g., the National Automotive Sampling System, NASS) and cases involving post-mortem human subjects (PMHS). The derivation was therefore more comprehensive, as NASS datasets generally skew towards younger occupants, and PMHS datasets generally skew towards older occupants. However, known deficiencies had to be addressed (e.g., the NASS cases had unknown stimuli, and the PMHS tests required transformation of known stimuli into THOR50 stimuli).
2015-11-09
Technical Paper
2015-22-0015
Yasuhiro Matsui, Shoko Oikawa
The main purpose of this study is to define the relationship between the car impact velocity and serious injury risk or fatality risk of cyclists. The authors investigated the risks of serious injuries and fatalities of cyclists using vehicle-cyclist accident data from the database of the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. The vehicle types considered are sedans, mini vans, box vans, light passenger cars and light cargo vans. The results revealed that a 10-km/h decrease in the impact velocity could reduce the severe injury risk and fatality risk for impact velocities of 40 km/h or higher. Specifically, when the impact velocity was less than or equal to 30 km/h, the serious injury risks were less than 21% and the fatality risks were less than or equal to 1% for the above listed vehicle types.
2015-09-15
Journal Article
2015-01-2385
Richard C. Millar
Abstract Unmanned aviation systems (UAS) acquired for US Navy for military roles are developed in the context of NAVAIR's rigorous and well-established policies, procedures and processes employed in the acquisition and development of manned aircraft. A key process is the preparation and approval of interim flight clearances (IFC) prior to flight test to ensure the aircraft is airworthy and thus safe to operate. Due to the perceived risks of UAS experimental flight test, the use of this process has been mandated for all Navy organizations, including use of commercially available UAS in research projects. This policy has proved to be a challenge, impeding and discouraging the use of UAS in research and experimental projects. Currently, the cost of compliance is unaffordable and IFC preparation and approval time are inconsistent with research cycle time expectations.
2015-09-15
Technical Paper
2015-01-2441
Ahmet Oztekin
Abstract This paper outlines an analytical framework to perform a data-driven, risk-based assessment of Air Traffic Control (ATC) facilities. Safety associated with an ATC facility is modeled as an influence network using a set of risk factors. A novel hybrid approach employing Adaptive-Network based Fuzzy Inference Systems is introduced to propagate the model. Statistical analysis of system-wide data for each risk factor is performed to identify outliers and understand underlying distributions. They are then used to define Fuzzy Membership Functions for model variables. Analytical Hierarch Process (AHP) is used to determine rules required by the model's inference engine. Finally, the methodology is applied to a set of ATC facilities using real data.
2015-04-14
Technical Paper
2015-01-1437
Tony R. Laituri, Raed E. El-Jawahri, Scott Henry, Kaye Sullivan
Abstract In the present study, various risk curves for moderate-to-fatal head injury (AIS2+) were theoretically assessed by comparing model-based injury rates with field-based injury rates. This was accomplished by applying the risk curves in corresponding field models. The resulting injury rates were considered from two perspectives: aggregate (0-56 kph events) and point-estimate (higher-speed, barrier-like events). Four risk curves were studied: a HIC15-based curve from Mertz et al. (1997), a BRIC-based curve from Takhounts et al. (2011), a BrIC-based curve from Takhounts et al. (2013) and a Concussion-Correlate-based curve from Rowson et al. (2013). The field modeling pertained to adult drivers in 11-1 o'clock, towaway, full-engagement frontal crashes in the National Automotive Sampling System (NASS, calendar years = 1993-2012), and the model-year range of the passenger vehicles was 1985-2010.
2015-04-14
Technical Paper
2015-01-0136
Ying Fan
Abstract In order to overcome the drawback that the traditional risk priority number method could not clearly make a risk priority sequence, a new analysis method of RPN was presented. Combined with loss costs, this method was based on FMEA. Several quantitative parameters such as servicing time and costs were introduced to replace the three parameters used in the traditional method. And it took loss costs caused by failure as the final risk priority number, instead of severity of effects, probability occurrence and difficulty detection. Finally, safety evaluation to work equipment and other critical systems of a forklift was processed as a case to illustrate this proposed method. The results showed that the results processed by the new method could be utilized to solve the problem that the RPN values couldn't be sorted.
2015-04-14
Technical Paper
2015-01-0137
Ying Fan
Abstract Accurate risk prioritizing is directly related to the effectiveness of risk management. To overcome the shortage of the single numerical evaluation value, aiming at improving the accuracy of risk factors, a new risk priority method was proposed based on geometric characteristics of triangular fuzzy number and Analytic Hierarchy Process (AHP). This method was established on the basis of the fuzzy description of risk factors from experts, after the risk evaluation system was established. Then the fuzzy description of risk was processed with AHP, and fuzzy weights of risk factors were obtained and calculated it by using the geometric characteristics of triangular fuzzy number. Finally, the detailed ranking of risk factors by severity, probability and detection of risk was obtained. The risk priority of forklift system was processed to analyze the feasibility of this method.
2014-11-11
Technical Paper
2014-32-0016
Sei Takahashi, Hideo Nakamura, Makoto Hasegawa
Abstract ISO 26262 (Road vehicles - Functional safety), a functional safety standard for motor vehicles, was published in November 2011. In this standard, hazardous events associated with each item constituting a safety-related system are assessed according to three criteria, namely, Severity, Exposure, and Controllability, thereby determining ASILs (Automotive Safety Integrity Levels) representing safety levels for motor vehicles. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply ASILs to motorcycles. In the first place, the situation of usage in practice presumably differs between motorcycles and motor vehicles. Accordingly, in this research, we attempted to newly define Motorcycle Safety Integrity Levels (MSILs).
2014-09-01
Journal Article
2014-01-9002
Zachary A. Collier, Steve Walters, Dan DiMase, Jeffrey M. Keisler, Igor Linkov
Counterfeit electronic components entering into critical infrastructure and applications through the global supply chain threaten the economy and national security. In response to the growing threat from counterfeits, the Society of Automotive Engineers G-19 Committee is developing AS6171. This aerospace standard is focused on testing facilities with a goal of standardizing the process of counterfeit detection. An integral part of the standard is a semi-quantitative risk assessment method. This method assigns risk scores to electronic components based on a number of relevant criteria, and places the components into one of five risk tier levels corresponding to an appropriate level of laboratory testing to ensure the authenticity of the component. In this way, the methodology aims at standardizing the risk assessment process and bases the identified risk as guidance for commensurate testing protocols.
2014-04-01
Technical Paper
2014-01-1715
Parul Goyal, Feng Liang, Olof Oberg
Abstract The aim of the paper is to describe how Volvo Construction Equipment uses a virtual product development process to analyze potential risks, find root causes and optimize future product development. A model based method is used to analyze a potential risk in the design of Wheel Loader transmissions. The risk was recognized from failure mode and effect analysis (FMEA), and a simulation model using AMESim modeling tool was developed to analyze the behavior of the new design. Together with test rig result, it is proved that the model based method gives a considerably accurate prediction of the system behavior. By using the model based approach, lead time for development process is reduced and important feedbacks from simulation model are obtained on early stage of the development. This paper further presents the use of the simulation model as a tool to predict the potential risks in the extreme operating conditions, which are difficult to test on the vehicle test bench.
2014-04-01
Technical Paper
2014-01-0426
Jeff D. Colwell
Abstract Results from a full-scale vehicle burn test involving a 1998 compact passenger car were used to evaluate vehicle fire dynamics and how burn patterns produced during the fire correlated with important characteristics of the fire, such as the area of origin. After the fire was initiated at the air filter in the engine compartment, the fire spread locally and, once the temperature near the origin reached about 750°C, the temperature at all but one location within the engine compartment began to increase. These temperatures continued to increase for the next 6 minutes and then a temperature gradient began to develop in the passenger compartment between the ceiling and the floor. About 5 minutes after the engine compartment became fully involved, the ceiling temperature reached about 590°C and flame spread within the passenger compartment increased. Over the next 4 minutes, the passenger compartment also became fully involved.
Viewing 1 to 30 of 53

Filter