Display:

Results

Viewing 1 to 30 of 4229
2017-03-28
Technical Paper
2017-01-0276
Lev Klyatis
This paper considers the situation in the laboratory testing: different stress types and accelerated testing, including accelerated reliability/durability testing, accelerated life testing, reliability testing, proving grounds, vibration, temperature, voltage, humidity, and others. In comparison with field situation, most of these testing simulate only one or part of the field input influences. One uses often not accurately the theory of physics-of-degradation process or failures for comparison of the field results with laboratory results. Thos situation will be considered with practical examples. It will be demonstrated that often used laboratory testing does not offer the possibility for successful prediction of product performance during service life As a result, there are many complaints, recalls, less profit than was predicted during design and manufacturing. It will be shown how one can improve this situation..
2017-03-28
Technical Paper
2017-01-0297
Alan Baumgartner, Bruce Barth, Timothy Hajduk
Current data monitoring techniques used by typical plant floor systems are good for collecting data, but operators have little visibility to what that data might be indicating. Processing the data into a story that leads to corrective action is usually done by specialists (e.g. Black Belts, Quality Analysts, etc.), requires mining and integration of data from multiple systems, and is typically only triggered by the occurrence of systemic poor quality (e.g. scrap production / rework cycles / waste). It was theorized that significant improvements in 1) throughput; 2) quality (consistency of throughput); and 3) reduction of waste could all be achieved if operators could be notified of the onset of variation before rather than after it cascades into a systemic failure mode. A new methodology for automating the traditional analysis practices and eliminating the need for operators to step aside to query any systems for current quality diagnostics was developed.
2017-03-28
Technical Paper
2017-01-0296
Oberti Dos Santos Almeida
One of the biggest challenges for the Product Development Engineers is to have a clear understanding of the Quality Principles and Disciplines they should follow while they are engineering. In general, the current Product Development System guides of the Automakers companies are mostly focused on provide guidance for the Engineers on the following areas: Design Efficiency; Design Rules for Product Robustness; Design Validation; Product Reliability; Testing Procedures. The introduction of a new/advanced technology system alone does not mean low incidence of customer complaints. The only way to get that is plan/execute Consumer Driven Design with excellence. Global Vehicles are more sensitive to Quality since they must satisfy diverse cultural customers without compromise reliability. When a new vehicle is being developed to be sold in many markets around the world – Global Product - this problem is even bigger. Different markets mean different customer expectations.
2017-03-28
Technical Paper
2017-01-0298
Allen Dobryden, Brian Rutter, Derek Hartl, Eric Bramson
Integration of a new, complex technology which crosses several powertrain subsystem boundaries (and thereby involves multiple organizations), without introducing inadvertent failure modes, can be a difficult task. This paper illustrates an approach to addressing this task at a system level using an example new technology. In product development activities involving primarily reuse of known technologies, perhaps with minor improvements, organizational and subsystem boundaries are generally clear. Interfaces are well established and responsibilities for failure mode avoidance are generally known. Implementation of a new technology which involves multiple parts of the organization, however, presents unique challenges to failure mode avoidance. The example technology primarily impacts the exhaust system, the powertrain cooling system, and the powertrain control system. It can affect engine operation, emissions, and performance.
2017-03-28
Technical Paper
2017-01-0275
Obuli Karthikeyan N, Prajitha N, SethuMadhavan P, Srinivasa Chandra V
As the technology gets upgraded every day, automotive manufacturers are also paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life without any failure. To develop a reliable product, functional and durability testing is not only sufficient rather it should undergo various types of stresses at different levels, to identify its potential modes of failure. By reliability testing, most of the failure modes of a component can be analyzed and eliminated in the design stage itself, prior to production. In this paper, electrical relay of a commercial vehicle was taken up for study to analyze the causes for field failure and to estimate its reliable life in the customer operating conditions. Few of the field failure samples were tested for its performance characteristics with typical testing protocol and strip out experiment was carried out to analyze the various failure modes.
2017-03-28
Technical Paper
2017-01-0299
Chandra Jalluri, Himanshu Rajoria, Mark Goderis, Michael Habel, Trevor Hill
In automotive manufacturing, MQL (Minimum Quantity Lubricant) machining has been implemented on multi-axis CNC Machining Centers. In MQL machining, since there is no flood coolant, small quantities of coolant through spindle-tool is used at targeted cutting zones. However, a challenge that MQL machining faces is significant thermal growth of machine components (spindle, column, fixture etc) that must be appropriately addressed in order to achieve quality with tight tolerances. A strategy adopted by CNC OEMs is to measure the thermal growth and offset it during machining (machine thermal compensation). A gage bore is mounted in the machine fixture and its position measured using a probe. Required offsets are then calculated and applied for subsequent machining. Different OEMs use different methods for this gage bore-probe based referencing. It is imperative that this compensation be done correctly for it directly impacts quality.
2017-03-28
Technical Paper
2017-01-1131
Keith Gilbert, Srini Mandadapu, Christopher cindric
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they provide lower mass of the automatic transmission shift system, they are easier to install into the vehicle during assembly and act as an abler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions such as storage bins and Human-Machine Interface controllers.
2017-03-28
Technical Paper
2017-01-0397
Salah H. R. Ali
There is a strong close correlation between the metrology and industry, especially in the automotive industry, which positively affects the world economy. Based on a local and world survey in the area of automotive industry, there is a great spreading of automotive in Egypt and world. Where, the automotive industry is considered as a leading industry for the world economy. This industry includes the complete vehicles’ manufacturing and their feeding industries for spare parts and accessories. This industry needs a wide background in many fields of engineering applications based on mechanical, chemical, mechatronic and material science. The metrology (the science of measurement and its applications) is considered as one of the very important science which can enhances this industry, where, it can increases the manufacturing quality of the main parts of the automotive.
2017-03-28
Technical Paper
2017-01-0295
Silvio César Bastos
Automotive industries has been seeking quality excellence as a key factor of competitiveness. Product characteristics and functions should meet the expectations of customers in terms of warranty and reliability. The objective of this paper is to present a method to improve the synchronization of customer´s products requirements with their suppliers in terms of key performance indicators. The improvement allows suppliers to take corrective and preventive actions through knowledge of components application in engines and vehicles. Engines assembly lines maintain records and daily meeting to explore trends of productivity and supplier quality performance is measured based on engines failure instead parts supplied. This methodology results integration between Lean Manufacturing and Supplier Quality Engineering and respective targets communizing efforts toward Quality Assurance.
2017-03-28
Technical Paper
2017-01-0341
Seyyedvahid Mortazavian, Javid Moraveji, Reda Adimi, Xingfu Chen
Engine camshaft cap components experience high number of fluctuating loads during engine operation. The problem is complicated in engines with variable cam timing, because the loading for these components are sensitive to engine valve timing (combustion phasing) which can lead to catastrophic overload or fatigue failures. Improving the design of these components using computer-aided tools can drastically reduce the cost and time to the market of the final acceptable design, by eliminating the number of physical prototypes. Hence, a decent and robust finite element analysis with representative load and boundary conditions can significantly reduce the premature failures in engine development. In this study, first a finite element analysis method is developed for simulating a cap punching bench test. Effect of punch radius and shape on the component stiffness is investigated and correlated with test data.
2017-03-28
Technical Paper
2017-01-0337
Kalyan S. Nadella
Ensuring durability is one of the key requirements while developing cooling modules for vehicles. Cooling modules typically include radiator, charge air cooler, transmission oil cooler, low-temp radiator and condenser. Typical loading on cooling modules comes from body, in the form of road loads. The road load accelerations are commonly utilized to predict the high-stress regions and predict the fatigue life of the components. In certain cases where components are attached to both body and engine, the cooling module components can experience additional loads which might require additional analysis to determine the fatigue life. In the proposed paper we look at the effect of engine roll on the fatigue life of transmission oil cooler which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. Bench tests were used to prove out the mode of failure observed in the simulations.
2017-03-28
Technical Paper
2017-01-0347
Yat Sheng Kong, Dieter Schramm PhD, Zaidi Omar PhD, Sallehuddin Mohd. Haris, Shahrum Abdullah PhD
This paper presents the development of a relationship between objective vehicle ride level and coil spring durability life using road data to shorten suspension design process. Current development processes of vehicle suspension systems which include vehicle ride and suspension spring durability are categorized into different stages of analysis and therefore, consumes lots of time. Through the developed predictive model, the ISO weighted accelerations were used to describe durability of spring components or vice versa. This model has led to immediate solution of suspension design with reduced number of testing. In order to construct the model, strain and acceleration data from various roads were measured using data acquisition which was involving car movements. Prior to the strain measurement, a finite element model of the spring was measured to identify the critical region of the spring and strain gauges were applied on the particular spot.
2017-03-28
Technical Paper
2017-01-0420
Prashant Khapane, Sumiran Lohani
Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. The durability of engine mounts is a concern due to their susceptibility to wear and failure owing to high vibrational inputs. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test engine mount designs. For the particular example considered here, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, Saishanker V, LAKSHMI PAVULURI, Gurdeep Singh Pahwa
Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
With increasing levels of driving automation, the information provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensor’s reliability is therefore crucial for ensuring the safety of the customer functions. There are currently no standardized procedures or guidelines for demonstrating the reliability of the sensor information. Engineers are faced with setting up test procedures and estimating efforts. Statistical hypothesis tests are commonly employed in this context. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. It also enables a more realistic representation of dependencies among errors.
2017-03-28
Technical Paper
2017-01-0052
Andre Kohn, Rolf Schneider, Antonio Vilela, Udo Dannebaum, Andreas Herkersdorf
The reliability of safety-related systems is a primary goal of automotive ECU development and hence an essential part in developing ECU architectures. Nowadays this becomes even more challenging due to the increasing complexity of algorithms and assistance systems that are already able to manage numerous driving tasks on their own. This trend will be additionally intensified by the growing degree of automated driving, continually reducing the need for manual driver intervention. But the absence of a human driver as a fallback leads to the replacement of fail-safe architectures with new fail-operational approaches to maintain control of vehicles in case of errors. In our contribution we will point out an exemplary approach to analyze the reliability of such a fail-operational concept on ECU level. For this, we consider a typical safety-related ECU from the chassis domain, used as a basis for enhancing it to facilitate fail-operational capabilities on a single ECU.
2017-03-28
Technical Paper
2017-01-0473
Satoshi Nakada, Toru Furusawa, Eiichiro Yokoi, R Carbas, M Costa, E Marques, G Viana, LFM da Silva
In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, for many types of structural adhesives, the relationship between the ductility and fracture energy values under static mixed-mode loading has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
2017-03-28
Technical Paper
2017-01-1244
Keisuke Kimura, Hiroshi Hosokawa, Tasbir Rahman, Tadashi Misumi, Takeshi Fukami, Masafumi Hara, Sachiko Kawaji, Satoru Machida
A new IGBT has been developed for Toyota’s 4th generation HV’s. The power loss reduction of power control units (PCUs) for hybrid vehicles (HVs) is essential to improve their fuel efficiency. It is important to reduce the loss of the power devices (IGBTs and FWDs) used in the PCUs, because of being about 20% of the whole power loss of the HVs. Also the trade-off between the power device downsizing and the heat dissipation feasibility is the important technical issues. In order to achieve the 4th generation PCU design goal, the IGBT development goal is to improve 19.8% of the losses, 30% of downsizing, 14% of the breakdown-voltage than the previous generation. For the loss reduction goal, SBL (Super-Body-Layer) structure is installed to improve the trade-off characteristic between the switching loss and the steady-state loss. The goal is achieved by optimizing the SBL impurity concentration which is an important parameter for trade-off characteristic improvement.
2017-03-28
Technical Paper
2017-01-0176
B. Vasanth, Uday Putcha Sr, Sathish Kumar S, Murali govindarajalu
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. Passenger thermal comfort is mainly influenced by the inside cabin temperature and airflow flows through the duct system. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. The main focus for all OEMs is to optimize the design of the duct system and satisfy the target requirements such as airflow, velocity and temperature. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Normally floor duct design is evaluated by the target airflow, velocity and temperature achieved at passenger leg locations.
2017-03-28
Technical Paper
2017-01-1331
Marko Basic, Thomas Resch
This paper describes a numerical study of the effect of hollow crankshafts on crankshaft local strength and durability as well as slider bearing contact behavior. Crankshaft dynamic simulation for durability is still a challenging task, although numerical methods are already worldwide established and integrated part of nearly every standard engine development process. Such standard methods are based on flexible multi-body dynamic simulation, combined with Finite Element analysis and multi-axial fatigue evaluation. They use different levels of simplification and consider the most influencing phenomena relevant for durability. Lightweight design and downsizing require more and more detailed methods due to higher deformation of the crankshaft. This is especially true for hollow shafts, as present in motorsport design or aerospace applications, but also for standard engine having high potential for significant weight savings.
2017-02-01
Book
He Tang
Proven technologies and processes are explored in this examination of modern automotive manufacturing. Fundamentals and applications, as well as new advances are discussed as the author bridges the gap between academic research and industrial practice. Having held positions as both a University Professor and as a Lead Engineering Specialist in industry, the author presents a concise understanding that reflects both technical and managerial perspectives with the aim of providing improvement through practical methods. Each chapter includes review questions and research topics, and, in addition, analysis problems are often included that comprehensively address: • Automotive Industry and Competition • Manufacturing Operations • Joining and Paint Processes • Production Operations and Quality Management • Performance Improvement Directly extracted and summarized from automotive manufacturing practices, this book serves as a fundamental manual.
2017-01-19
Article
Ten transmission ratios feel ideal in Ford's full-size pickup equipped with the 3.5-L V6 and the new 10R80 planetary automatic.
2017-01-18
Article
Artificial intelligence is the computer science that will make fully autonomous vehicles practical.
2017-01-13
Article
Range anxiety is not just affecting EV drivers on the road; it is also a significant hurdle for Formula E teams on the track. U.K. simulator specialist rFpro says its technology can help.
2017-01-10
Technical Paper
2017-26-0309
Sathish Kumar Prasad, J Prakaash, P Dayalan
Abstract Automotive vehicles are subjected to a variety of loads caused by road undulations. The load history data measured from the roads are one of the vital input parameters for physical test as well as virtual durability simulation of vehicles. In general, the automotive vehicles are instrumented and subjected to a variety of driving conditions in diverse roads to obtain representative road load time histories. Acquired road load time history signals from various roads are exhaustive and repetitive in terms of both time length and data size. This results in more computation and virtual simulation processing. Hence it is imperative to reduce the input time signals without compromising on the representation of the actual operating conditions. Signal reduction of measured road load histories for virtual simulation assumes greater significance for durability prediction.
2017-01-10
Technical Paper
2017-26-0310
Vyankatesh Madane, Sameer Shivalkar, Chandrakant Patil, Sanjeev Annigeri
Abstract In rubber industry, different techniques are used to enhance durability. This paper gives complete design, development and testing methodology of rubber bush in which pre-compression of rubber is used to enhance rubber bush life. In bogie suspension, axle to torque rod join is critical as it has to transfer lateral and longitudinal load with flexibility. This makes challenging to design joint which need to carry more than 6 ton load and having flexibility of more than 10 degree articulation. In this torque rod to axle joint called as End bush, compressed rubber is used to carry high load with flexibility. Other possible material for bush can be brass bush which able to carry high load however not able to give high flexibility Design and finite element calculations are done to design pre-compression and rubber volume to get desired strength and stiffness to carry required load with flexibility.
2017-01-10
Technical Paper
2017-26-0235
Vinaykumar Dhangar, Solairaj Perumal, Abhay Kumar, Dinesh Redkar, Arun Mahajan, Abhirup Chakraborty, T Ganesan
Abstract A tractor is vehicle specifically designed to deliver a high tractive effort at slow speeds for carrying out various agriculture operations like ploughing, rotavation etc. using implement. Hydraulic system is a key feature which connects these implements with the tractor. It controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induces extreme range of load on the hydraulic system, thus making it challenging to design these components. Bell crank assembly is one of the main components of hydraulic system which controls the draft (thus, the loads experienced by tractor) through load sensing mechanism. Often bell crank assembly failures are reported from field due to uneven soil hardness and presence of rocks. This paper studies one of such bell crank assembly failures in the field. The failure was reported after half life cycle of usage during agriculture Operation.
2017-01-09
Article
CEO John Krafcik told the Automobili-D audience in Detroit that Waymo is building its own hardware suite with a fully top-to-bottom, full-stack approach. The classic auto industry vertical integration includes all vision sensors, radars and LiDAR, along with related “AI compute” artificial-intelligence platform.
2017-01-07
Article
Motion sickness in autonomous vehicles is the new "elephant in the room," with engineers suffering during autonomous-driving simulator runs. Researchers are working to solve this nasty issue.
2017-01-04
WIP Standard
AMS2503G
This specification covers the engineering requirements for finishing aircraft parts and assemblies with a black enamel.
Viewing 1 to 30 of 4229

Filter