Display:

Results

Viewing 61 to 90 of 1640
2016-04-05
Technical Paper
2016-01-0376
Yunkai Gao, Zhaoxuan Feng, Jianguang Fang, Shihui Wang
Abstract The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
2016-04-05
Technical Paper
2016-01-0408
Sagar Polisetti, Siddesh Gowda, Nitin Kumar Khanna, Manjul Jyoti
Abstract Suspension system is one of the most important systems in an automobile and the failure in the sub systems or parts would prove catastrophic. A semi-trailing arm (STA) suspension is an independent rear suspension system for automobiles where each wheel hub is located only by a large, roughly triangular arm that pivots at two points onto the chassis or the body. STA usually is subjected to three directional loads viz. vertical, longitudinal and lateral in service. The conventional methodology of validating the system is by applying multi-axial loads or by road load simulation consuming significant amount of time. In this paper an attempt is being made to validate the damper mounting pins by reproducing the damper loads locally instead of validating the entire system. STA was strain gauged at the critical locations and was mounted onto the vehicle.
2016-04-05
Technical Paper
2016-01-0508
Hyung Seok KIM
Abstract This study provides a tire puncture sealant including NR latex and acrylic emersion, which has a reduced viscosity at -40°C, and is also excellent storage stability at -40°C to 70°C, initial sealing performance. Also, this study provides device for sealing inflatable objects. 'One- Piece Tire Repair Kit' can reduce weight and operation steps.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-0318
Lev Klyatis
Abstract This paper will discuss the problem of improving engineering culture for development reliability, quality, and testing of the automotive industry product. The basic approach relates to other industries too. The paper will consider why it is so important for engineers and managers, and how it relates to Systems Engineering, which simply stated is , a system which is an integrated composite of people, products, and processes that provides a capability to satisfy a stated need or objective. One of the basic problems of management is strategic thinking. Predicting is inaccurate when it is based on information obtained from using traditional approaches of accelerated life testing (ALT) data where the degradation (failure) processes differ substantially from the product’s degradation processes during service life under real world conditions.
2016-04-05
Technical Paper
2016-01-0274
Sharon L. Honecker, David J. Groebel, Adamantios Mettas
Abstract In order to accurately predict product reliability, it is best to design a test in which many specimens are tested for a long duration. However, this scenario is not often practical due to economic and time constraints. This paper describes a reliability test in which a limited number of specimens are tested with little time remaining before the scheduled start of production. During the test, an unexpected failure mode that can be mitigated through a product redesign occurs. Because the scheduled start of production is near, there is not enough time to perform a test with redesigned specimens, so the current test proceeds as planned. We discuss several methods and the associated assumptions that must be made to account for the presence of the unexpected failure mode in the test data in order to make predictions of reliability of the redesigned product.
2016-04-05
Technical Paper
2016-01-0270
Zhigang Wei, Limin Luo, Michael Start, Litang Gao
Product validation and reliability demonstration require testing of limited samples and probabilistic analyses of the test data. The uncertainties introduced from the tests with limited sample sizes and the assumptions made about the underlying probabilistic distribution will significantly impact the results and the results interpretation. Therefore, understanding the nature of these uncertainties is critical to test method development, uncertainty reduction, data interpretation, and the effectiveness of the validation and reliability demonstration procedures. In this paper, these uncertainties are investigated with the focuses on the following two aspects: (1) fundamentals of the RxxCyy criterion used in both the life testing and the binomial testing methods, (2) issues and benefits of using the two-parameter Weibull probabilistic distribution function.
2016-04-05
Technical Paper
2016-01-0272
Huairui Guo, David Dronzkowski
Abstract Pre-production vehicle validation is a critical step in understanding what potential issues end customers may find. Road profiles used in vehicle level tests are critical in finding failures. Clearly, if all the vehicles are tested only on highway, many failures will not be discovered. Therefore, using the right road profiles is very important. Traditionally, customer survey data is used to identify an appropriate road profile by defining a route that represents the Xth percentile customer. In this paper, a clustering method is applied to group all the customers into several groups. Each group is represented by a single road profile, and the entire customer population can be represented by multiple road profiles. If vehicles are tested using these profiles, then the road test can better represent the field condition, and hopefully failures can be discovered more efficiently.
2016-04-05
Technical Paper
2016-01-0412
Mathialgan Balaji, B. Jaiganesh, Selvakumar Palani, K. Somasundaram, Srinivasa Rao
Abstract Tractors are the self-propelled vehicle which finds its major application in agriculture, haulage and construction equipment. The product development cycle time of a tractor is more as compared to automobiles since it has to undergo rigorous field testing. Bringing more realistic component and system level validation in the test lab will drastically reduce the product development cycle time. Non-availability of standard usage pattern and customer-correlated proving ground pose a bigger challenge for bringing the field conditions to the lab. As a result, the tractor has to be instrumented with sensors and load-time history needs to be acquired as per real world usage pattern. Raw data from the field cannot be used directly for lab testing since the number of load cycles will be very high. Raw data have to be edited based on damage calculation and fatigue sensitivity analysis technique.
2016-04-05
Technical Paper
2016-01-0434
Roshan N. Mahadule, Jaideep Singh Chavan
Abstract Door closing velocity (DCV) is one of the important design parameter for door durability performance. The closing velocity varies with the design parameters and physical properties of the door. The variation in door closing effort may increase or decrease the durability of the door and body components, this can be a concern when the overall vehicle durability performance is considered. This paper gives a mathematical model to calculate the door closing effort accounting the energy sink from various door design parameters such as door seal, latch, hinge, door weight, checkstrap and cabin-pressure. In addition to this, the MS-Excel based computation tool has been developed, which aims to calculate the door closing velocity and energy contribution from each design parameter. This tool is very interactive and effective for durability engineer and helps in improving the quality of vehicle door design.
2016-04-05
Technical Paper
2016-01-0926
Teuvo Maunula, Thomas Wolff, Auli Savimäki
The tightening pollutant emission limits require the use of active aftertreatment methods for NOx and particulate matter (PM). Diesel particulate filter (DPF) is a part of commercial aftertreatment system (ATS). PM accumulated in DPF is continuously passively or periodically actively regenerated with the assistance of efficient diesel oxidation catalysts (DOC) having a high efficiency and durability in hydrocarbon (HC), NO and CO oxidation reactions. A high HC concentration during fuel feeding in active regeneration is demanding for DOC. The deactivation in air, hydrothermal, sulfation and active regeneration conditions were evaluated with platinum (Pt-) and platinum-palladium (PtPd)-DOCs by laboratory simulations using the ageing temperature and time as primary variables. The oxidizing conditions with a high oxygen concentration without HCs were deactivating DOCs clearly more than active regeneration conditions with a low oxygen and high HC concentration at 700-800°C.
2016-04-05
Technical Paper
2016-01-0953
Homayoun Ahari, Michael Smith, Michael Zammit, Brad Walker
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
2016-04-05
Technical Paper
2016-01-1391
Subash Sudalaimuthu, Mohamed Sithik, Roberto Pesce Jr, Chandra Mouli Sankaran
Abstract Based on current trends, there is a huge demand for lightweight components, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (Misuse load case) based optimizations are relatively complex due to its highly nonlinear behavior. However, durability performances are critical in a front cradle design. So a process needs to be identified for creating a new light weight front cradle design. This study talks about the process of identifying new cast aluminium cradles achieving NVH and durability performance. Load path study using topology optimization is done based on compliance method for the durability load case. A concept model is generated from the topology results. This concept model is further optimized for thickness of ribs and walls by the application of various shape variables. All the critical non linear durability load cases are linked for the shape optimization study.
2016-04-05
Technical Paper
2016-01-1369
Pankaj Goverdhan Bhirud, Andrew Blows, Peter Wakelin, Ajay Virmalwar
Abstract Fatigue life predictions using the strain-life method are used in the design of modern light weight vehicle, for the complex loading that occur with the structural durability tests that these vehicles undergo. The accuracy of these predictions is dependent upon the many factors; geometry, loads & materials etc. This paper details a new procedure to ensure the quality and accuracy of the material parameters for the fatigue life prediction software. The material parameters for the solver are obtained by performing strain-controlled fatigue tests. The geometry of the coupons tested is determined by size and thickness of the material specimen that they are machined from and the loading regime in the test. Detailed data analyzed is conducted on these tests and the parameters that are used as input into the CAE strain-life fatigue prediction software are generated.
2016-04-05
Technical Paper
2016-01-1292
Manish Dixit, V Sundaram, Sathish Kumar S
Abstract Noise pollution is a major concern for global automotive industries which propels engineers to evolve new methods to meet passenger comfort and regulatory requirements. The main purpose of an exhaust system in an automotive vehicle is to allow the passage of non-hazardous gases to the atmosphere and reduce the noise generated due to the engine pulsations. The objective of this paper is to propose a Design for Six Sigma (DFSS) approach followed to optimize the muffler for better acoustic performance without compromising on back pressure. Conventionally, muffler design has been an iterative process. It involves repetitive testing to arrive at an optimum design. Muffler has to be designed for better acoustics performance and reduced back pressure which complicates the design process even more.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
Abstract At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and Multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in laboratory. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road.
2016-04-05
Technical Paper
2016-01-1393
Prabhakar Konikineni, V. Sundaram, Kumar Sathish, Sankarasubramanian Thirukkotti
Abstract Fan shroud is one of the critical components in an engine cooling system. It helps in achieving optimum air flow across the heat exchangers. The major challenge is to design a fan shroud which meets noise, vibration and harshness (NVH) requirements without compromising on air flow targets [1]. An improperly designed fan shroud will cause detrimental effects such as undesirable noise and vibration, which will further damage the surrounding components. In current days, multiple simulations and test iterations are carried out in order to optimize its design. The objective of this paper is to provide a design framework to achieve optimized fan shroud that meets NVH requirements in quick turnaround time using Design for Six Sigma (DFSS) approach [2]. The purpose of the Engine cooling system is to maintain the coolant temperature across the vehicle.
2016-04-05
Technical Paper
2016-01-0393
Kevin P. Barbash, William V. Mars
Abstract We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
2016-04-05
Technical Paper
2016-01-0283
Joydip Saha, Harry Chen, Sadek Rahman
Abstract More stringent federal emission regulations and fuel economy requirements have driven the automotive industry toward more sophisticated vehicle thermal management systems in order to best utilize the waste heat and minimize overall power consumption. With all new technologies and requirements, how to properly design, optimize, and control the vehicle thermal and cooling systems become great challenges to automotive engineers. Model based approach has become essential to the new thermal management system architectures design and evaluation of the optimal system solutions. This paper will discuss how the model based vehicle thermal system simulation tools have been developed from analytical & empirical data, and have been used for assessment and development of new thermal management system architectures.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
2016-04-05
Technical Paper
2016-01-0279
Chong Chen, Zhenfei Zhan, Jie Li, Yazhou Jiang, Helen Yu
Abstract To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
2016-04-05
Technical Paper
2016-01-1482
Paul Montalbano, Daniel Melcher, Rachel Keller, Thomas Rush, Jay Przybyla
Abstract A number of methods have been presented previously in the literature for determination of the impact speed of a motorcycle or scooter at its point of contact with another, typically larger and heavier, vehicle or object. However, all introduced methods to date have known limitations, especially as there are often significant challenges in gathering the needed data after a collision. Unlike passenger vehicles and commercial vehicles, most motorcycles and scooters carry no onboard electronic data recorders to provide insight into the impact phase of the collision. Recent research into automobile speedometers has shown that certain types of modern stepper motor based speedometers and tachometers can provide useful data for a collision reconstruction analysis if the instrument cluster loses electrical power during the impact, resulting in a “frozen” needle indication.
2016-04-05
Journal Article
2016-01-0494
Masashi Sadatomi, Hiroaki Ito
Abstract In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
2016-04-05
Journal Article
2016-01-0269
Zhigang Wei, Michael Start, Jason Hamilton, Limin Luo
Durability and reliability performance is one of the most important concerns for vehicle components and systems, which experience cyclic fatigue loadings and may eventually fail over time. Durability and reliability assessment and associated product validation require effective and robust testing methods. Several testing methods are available and among them, three basic testing methods are widely used: life testing, binomial testing (bogey testing), and degradation testing. In fact, their commonalities, differences, and relationships have not been clearly defined and fully understood. Therefore, the maximum potential of these testing methods to generate efficient, optimized, and cost-effective testing plans, consistent results, and meaningful results interpretation have been significantly limited. In this paper, a unified framework for representing these testing methods and conducting reliability analysis in a single damage-cycle (D-N) diagram is provided.
2016-04-05
Journal Article
2016-01-0296
Monika Minarcin
Abstract Increasing electrification of the vehicle as well as the demands of increased connectivity presents automotive manufacturers with formidable challenges. Automakers and suppliers likely will encounter three practices that will influence how they develop and manufacture highly connected vehicles and future e-mobility platforms: 1) hierarchical production processes in fixed footprints that do not share data freely; 2) lack of real-time, in-line quality inspection and correction processes for complex miniaturized electronic components; and 3) floor to enterprise resource and execution systems that can collect, analyze and respond to rapidly changing production needs.
2016-04-05
Journal Article
2016-01-0319
David E. Verbitsky
Abstract Failure analysis (FA) and accelerated testing are essential tools used in mobility electronics. Yet, FA’s role is underestimated and underutilized. Its administration lacks standardization and support, esp., during multi-stress accelerated reliability testing (ART). Proposed three-stage systemic early FA (SEFA) methodology provides feedback using conventional and original systematic hierarchical complementary multidisciplinary comparative tools and methods focusing on prevalent early failures (EF). Subject matter result-oriented technical root-cause FA (RCFA) is a vital past of SEFA. This paper outlines three-phase RCFA methodology along with specific methods, tools, and examples related to ART. Presented EF classifications interpret EFs’ symptoms, mechanisms, and causes and propose corrective actions. Suitable RCFA-SEFA improve products and ART by precluding-resolving prevalent EF.
2016-04-05
Journal Article
2016-01-0413
Umud Esat Ozturk, Lutfi Ucar, Kaveh Shahidi, Nuri Ersoy, Onur Zobi, Umit Bagdat, Rıfat Yanarocak, Serkan Elmalı
Abstract Internal combustion engines are attached on the vehicle body using engine mounts composed of two cast iron brackets and a rubber isolator connecting them. Engine mount road load identification during vehicle durability tests on proving ground is a critical task for engine mount development. Using standard multi-axial load-cell is not possible unless major design revisions on the vehicle body or engine block are done. Using wheel force transducers and vehicle dynamic simulation tools need extensive model tuning work to get accurate load information. Hence, a custom multi-axial load-cell design is preferred for the engine mount load identification of a BCar I4 engine. The developed load-cell engine mount bracket can be installed without doing any design changes on the vehicle. Design, durability analysis, instrumentation, calibration and vehicle installation of custom designed six degree of freedom multi-axial load cell have been performed.
2016-04-05
Journal Article
2016-01-0050
Huafeng Yu, Chung-Wei Lin, BaekGyu Kim
Abstract Modern vehicles can have millions of lines of software, for vehicle control, infotainment, etc. The correctness and quality of the software play a key role in the safety of whole vehicles. In order to assure the safety, engineers give an effort to prove correctness of individual subsystems or their integration using testing or verification methods. One needs to eventually certify that the developed vehicle as a whole is indeed safe using the artifacts and evidences produced throughout the development cycle. Such a certification process helps to increase the safety confidence of the developed software and reduce OEM’s liability. However, software certification in automotive domain is not yet well established, compared to other safety-critical domains, such as avionics and medical devices. At the same time, safety-relevant standards and techniques, including ISO 26262 and assurance cases, have been well adopted.
2016-04-05
Journal Article
2016-01-0074
Michael Jensen
Abstract Electronics now control or drive a large part of automotive system design and development, from audio system enhancements to improvements in engine and drive-train performance, and innovations in passenger safety. Industry estimates suggest that electronic systems account for more than 30% of the cost of a new automobile and represent approximately 90% of the innovations in automotive design. As electronic content increases, so does the possibility of electronic system failure and the potential for compromised vehicle safety. Even when designed properly, electronics can be the weakest link in automotive system performance due to variations in component reliability and environmental conditions. Engineers need to understand worst-case system performance as early in the design process as possible.
2016-04-05
Journal Article
2016-01-1401
Thomas M. Cleary, Timothy Huten, Daniel Strong, Chester S. Walawender
Abstract The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
Viewing 61 to 90 of 1640