Display:

Results

Viewing 181 to 210 of 3576
2015-06-09
Article
For the design process of the class of aircraft known as an efficient supersonic air vehicle, particular attention must be paid to the propulsion system design as a whole, including installation effects integrated into a vehicle performance model.
2015-05-19
Standard
AS9132B
This standard defines uniform quality and technical requirements relative to metallic parts marking performed using "data matrix symbology" within the aviation, space, and defense industry. ISO/IEC 16022 specifies general requirements (e.g., data character encodation, error correction rules, decoding algorithm). In addition to ISO/IEC 16022 specification, part identification with such symbology is subject to the requirements in this standard to ensure electronic reading of the symbol. The marking processes covered by this standard are as follows: Dot Peening Laser Electro-Chemical Etching Further marking processes will be included, if required. Unless specified otherwise in the contractual business relationship, the company responsible for the design of the part shall determine the location of the data matrix marking. Symbol position should allow optimum illumination from all sides for readability. This standard does not specify information to be encoded.
2015-05-14
Article
The newly named Johnson Controls Vehicle Engineering Laboratory, on the Lawrence Technological University campus in Michigan, will serve the energy-storage-system supplier and benefit LTU engineering students.
2015-05-06
WIP Standard
AMS2631E
This specification covers the procedure for ultrasonic inspection of wrought titanium and titanium alloy products 0.25 inch (6.4 mm) and over in cross-section (thickness) or diameter.
2015-05-05
Article
At Intermat, LiuGong announced that it was in a 60-day countdown before its new Global Research and Development Center opens in June at Liuzhou, also home to the company's global headquarters.
2015-04-30
Article
New AWD systems from BorgWarner and Honda deliver significant improvements in efficiency, as well as vehicle dynamic performance.
2015-04-29
Article
One of the key differentiators of the EP-8100 for commercial and military simulation and training is the system’s ability to use customers’ existing databases.
2015-04-28
Article
EM Test now offers the VDS 200Q Series, a four-quadrant voltage drop simulator that can source and sink current using a programmed voltage in both positive and negative polarities.
2015-04-24
Article
Julabo introduces two additional highly dynamic temperature control systems: the process circulators Presto A45 and A45t.
2015-04-24
Article
Boeing is in the midst of several months of flights with its ecoDemonstrator 757 in a first-round effort to evaluate new technologies in 2015 that are expected to reduce environmental effects on natural laminar flow as a way to improve aerodynamic efficiency while reducing noise and carbon emissions.
2015-04-24
Article
The engine bay is an essential component of the AgustaWestland AW609 tilt rotor nacelle, since it determines the performance of the engine and assures safe maneuvers for every flight condition.
2015-04-21
Article
Schmitt Industries announces availability of the AR 2000 line, with special capabilities for distance measurement on hot surfaces—e.g., red hot, glowing steel, and for outdoor use in bright lighting conditions with high constant or stray light levels.
2015-04-15
Article
Given the pace of innovation, the goal of autonomy and automation will force more and more features into the electronics of off-highway vehicles, according to Ian Fountain, NI's Director of Application Segments.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Technical Paper
2015-01-0363
Vasanth Balashunmuganathan, Ramakrishna Nukala, Sathishkumar Sampath Kumar, Murali Govindarajalu
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
2015-04-14
Technical Paper
2015-01-0421
Hye Seong Heo, Christoph Pannemann, Yun Kyu Choi, Achim Strass
Abstract This paper presents a reliability study of a directly cooled IGBT module after a test drive of 85,000 Km in a fuel cell electric vehicle, as well as of an indirectly cooled IGBT module after a test drive of 200,000km in a hybrid car on public roads. At the end of the test drive, the inverter units were disassembled and analyzed with regard to the lifetime consumption. First, electrical measurements were carried out and the results were compared with the ones obtained directly after module production (End of Line test). After that, ultrasonic microscopy was performed in order to investigate any delamination in the solder layers. As a third step, an optical inspection was performed to monitor damages in the housing, formation of cracks or degradation of wire bonds. The results show none of the depicted failure modes could be found on the tested power modules after the field test. Obviously, no significant life time consumption could be observed.
2015-04-14
Technical Paper
2015-01-0447
Venkatesh Agaram, Julian Venegas
Abstract System dynamics modeling of complex processes such as product development, manufacturing, and service, is an efficient approach for assessing value potential of different business transformation alternatives at small and large enterprises. Process elements such as generation of concepts, detailed designs, pilot level plant trials, etc. can be modeled including first-pass work, testing and review, rework identification and defect fixing, along with release readiness, staffing, schedule pressures, overtime and many other business metrics. Enterprise level processes, with their complex logic loops, can be represented as a system of coupled nonlinear differential equations, whose solutions can reveal the intricate underlying dynamics. Design of experiments, performed on the system dynamics models representing the business processes, are an inexpensive way of gaining insights into the impact of interactions between the numerous process control variables.
2015-04-14
Technical Paper
2015-01-0431
KI Woo Sung, Jong Gurl Kim, Dae-Un Sung, Hye Mi Kim
Abstract This study examined various warranty data analysis methods to identify and study the one most suitable for Hyundai Motor warranty data. The drawbacks of the conventional life table method were overcome to develop an analysis method optimized for vehicle characteristics. The proposed method was examined for its suitability to various applications, such as providing the information necessary for determining the service life of parts, verifying the effects of design changes, and designing warranty and maintenance policies. The analysis data used in this study were derived from the 10-year powertrain parts warranty data of vehicles sold in the USA, South Korea, and China.
2015-04-14
Technical Paper
2015-01-0582
Deepak Ranjan Bhuyan, Sreekanth Netapalli, Sathya Dev, Soundarya Srinivasan
Abstract Springback prediction for stamped components is a challenging task for Automotive Industry. Automotive Manufacturers are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Recent development in Finite Element Analysis (FEA) studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA techniques are trying to close this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool. The behavior of material with different simulation parameters has been studied in this paper and the ones that best correlate with actual data are identified.
2015-04-14
Technical Paper
2015-01-0606
Jiaquan Chen, Min Qin, Lingge Jin, Liu Tao, Yongfeng Jiang, Wei Wang, Yin-Ping Chang
Abstract An automotive vehicle should be designed to satisfy the wants of customers. The key is how to convert voices of customers into engineering languages. In other words, transfer the wants of customers into the right technical characteristics of a vehicle. A questionnaire of customer wants for a CUV (Crossover Utility Vehicle) is created and processed. Using QFD (Quality Function Deployment) and modified KANO model, the relative important degree is obtained from the original relative important degree of customer wants surveyed. Since some information gained is uncertain and the questionnaire sample is limited, a gray correlation analysis method is introduced, which calculates the competitive important degree of customer wants, then the final important degree of customer wants is gained by integrating the relative important degree and the competitive important degree.
2015-04-14
Technical Paper
2015-01-0600
Marc Rosenbaum
Abstract A new generation of 3D inspection machines is now available to verify in line 3D dimensional conformity of complex parts - especially Powertrain ones - with accuracy down to 0.1 μm within manufacturing cycle time of large series. Inspecting in line 100% of production with an accuracy and at speed compatible with the most demanding part accuracy and fastest cycle time is presently already a reality for some large tier1 suppliers in Europe. Purpose of this paper is to introduce this breakthrough technology using state of the art non-contact sensing technology allied with innovative mechanics and the latest developments in 3D metrology software
2015-04-14
Technical Paper
2015-01-0639
Adebola Ogunoiki, Oluremi Olatunbosun
Abstract This research proposes the use of Artificial Neural Networks (ANN) to predict the road input for road load data generation for variants of a vehicle as vehicle parameters are modified. This is important to the design engineers while the vehicle variant is still in the initial stages of development, hence no prototypes are available and accurate proving ground data acquisition is not possible. ANNs are, with adequate training, capable of representing the complex relationships between inputs and outputs. This research explores the implementation of the ANN to predict road input for vehicle variants using a quarter vehicle test rig. The training and testing data for this research are collected from a validated quarter vehicle model.
2015-04-14
Technical Paper
2015-01-1613
Nikhil Bolar, Thomas Buchler, Allen Li, Jeff Wallace
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The three key requirements of structural performance evaluation for vehicle development are NVH, durability and safety.
2015-04-14
Technical Paper
2015-01-0487
Lev Klyatis
Abstract This paper will discuss the problem with successful predicting of product performance (reliability, quality, durability, safety, recalls, profit, life cycle cost, and other interconnected technical and economic components of performance). The best component for analysing the performance situation during service life, including predicting, is recalls, because, first, recall accumulates the safety, reliability, durability, quality, profit, and total economic situation. And second, there is open official and objective information about the number of recalls from Government (National Highway Trafic Safety Administration and others), as well as companies-producers. Therefore, for analyzing the situation with the product performance, including predicting, this paper considers the situation with recalls.
2015-04-14
Technical Paper
2015-01-0471
Apurva Gokhale, Sumeet Parashar, Saket Kansara
Abstract Need for accounting Robustness and Reliability in engineering design is well understood and being researched. However, the actual practice of applying robustness and reliability methods to high fidelity CAE based simulations, especially during optimization is just starting to gain traction in last few years. Availability of computing power is helping the use of such methods, but, at the same time the demand for modeling stochastic behavior with high fidelity CAE simulations and considering large number of stochastic variables still makes it prohibitive. Typically, Robust Design Optimization (RDO) formulations calculate mean and standard deviation of responses based on sampling. On the other hand Reliability Based Design Optimization (RBDO) formulations have been using methods like First Order Reliability Method (FORM) or Second Order Reliability Method (SORM) which require nested optimization to evaluate joint probability distribution and reliability factor.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Technical Paper
2015-01-0494
Sulki Seong, Wangoo Kim, Daesung Bae, Seungpyo Lee, Younggeol Cho, Kyeongdeok Yang
Abstract A rotating bearing must have an excellent durability life. Various studies have been conducted for a long time to predict the bearing durability life. However, the bearing durability life has been predicted by an analytic formula in terms of the raceway and ball. A finite element structural analysis has been carried out for a flange, commonly with an assumption of a static load. So it is difficult to consider the dynamic effects (Centrifugal force, Gyroscope effect) of the bearing, which is very important due to its high speed operation. In order to predict the accurate bearing durability life, the dynamic effects must be considered. This paper proposes a method for bearing durability life prediction, considering dynamic effects. Contact between the raceway and ball is one of the important factors to take into account for the dynamic effects of the bearing.
2015-04-14
Technical Paper
2015-01-0463
Kasiraja Thangapandian, Immanuel Rajkumar
Abstract In recent years the automotive industry is facing unprecedented influx of new technology advancements and ever-increasing consumer demands for media, entertainment and connectivity applications. This drives the automotive industry to deliver the products at a faster pace, thereby reducing time to market which results in issues from end users and dealers. Automotive industries are striving hard to keep pace with these radical changes with increase in software and electronics which in turn necessitates a systematic and effective software engineering approach to deliver high quality product from the core embedded software industry. This paper details how embedded software projects are developed globally and customer issues are collected and analyzed. It also discuss about the method used for performing effective Root cause analysis for identifying the systemic issues and formulating the systemic improvement actions.
2015-04-14
Collection
This collection of technical papers will address theoretical developments and automotive applications in RBDO and Robust Design. Topics include: computational algorithms for efficient estimation of reliability, Monte Carlo simulation, Bayesian reliability, Dempster-Shafer Evidence Theory, and Multi-Disciplinary Optimization, among others.
2015-04-14
Technical Paper
2015-01-0205
Steve Trythall
Abstract Rapid resolution of electrical faults reduces costs, enhances brand image and maximizes vehicle availability. Although diagnostic systems continue to improve, service technicians frequently have to consult schematics, location views and other engineering resources to fix a problem. But this data can be hard to find, hard to understand, and out of date or wrong. This session presents new technology to leverage design data directly into the service domain. The technician is presented only with relevant vehicle-specific data, is able to navigate dynamically through electrical schematics, and can seamlessly link with other resources such as 3D models and repair procedures.
Viewing 181 to 210 of 3576

Filter