Display:

Results

Viewing 91 to 120 of 3317
Technical Paper
2014-04-01
Venkatesh Agaram
Abstract Cars and trucks today are getting fitted with a large number of sensors in an effort to improve safety, comfort, fuel economy and emissions. The revenue from the automotive sensors market, driven by intense global competition and regulation, is expected to double over the next decade, while the size of the automotive sensors market, over the same period, is expected to triple The field of sensor-fusion is highly multi-disciplinary, making use of technics from artificial intelligence, pattern recognition, digital signal processing, control theory, and statistical estimation. Sensor-fusion strategies based on probability theory, evidence theory, fuzzy theory, and possibility theory are being explored in different industries, e.g., defense, robotics, automotive, etc. The majority of sensor-fusion operators are based on optimistic assumptions about reliability of the information generated by the sensors. However, many or all of sensors in a fused sensor system may exhibit substantially different reliability levels over the life of a vehicle, and it is necessary to account for this variation/degradation to avoid any decrease in performance of the fusion results.
Technical Paper
2014-04-01
Mohamed Sithik, Rama Vallurupalli, Barry (Baizhong) Lin, Subash Sudalaimuthu
Abstract In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts. The optimized design is verified for detailed load case and life target.
Technical Paper
2014-04-01
Zhigang Wei, Limin Luo, Shengbin Lin, Dmitri Konson
Abstract A modern definition of quality control and improvement is the reduction of variability in processes and products. The reduced variability can be directly translated into lower costs, better functions and fewer repairs. However, the final quality of processes and products is sometimes derived from other measured variables through some implicit or explicit functional relationships. Sometimes, a tiny uncertainty in a variable can produce a huge uncertainty in a derived quantity. Therefore, the propagation of uncertainty needs to be understood and the individual variables need to be well controlled. More importantly, the critical factors that affect quality the most should be identified and thoroughly investigated. Design of experiments and statistical control plays central roles in finding root cause of failure, reduction of variability and quality improvement. In this paper, the theories on quality control and improvement are reviewed first with the emphasis on statistical data analysis and uncertainty propagation.
Technical Paper
2014-04-01
Melanie Zielenski, Peter Downes, Darren Jelbert
Abstract Heavy duty diesel engine development has always faced high customer durability requirements, short development timelines and increasingly stringent emissions legislations. However, more frequently heavy duty engines are being used in multiple vehicle platforms across the globe with increasingly stringent quality demands in emerging markets. In order to meet engine life requirements, Delphi Diesel Systems has adapted accepted validation procedures to evaluate their system performance for the global market. In addition to durability and structural testing Delphi Diesel Systems has introduced specialized tests to validate their product at extremes of environmental conditions and fuel properties and has increased OEM collaboration. This paper details some of the adjustments made to the validation test suite to meet the specific challenges of the Heavy Duty market.
Collection
2014-04-01
This technical paper collection focuses on state-of-the-art fatigue theory and advanced development in fatigue analysis methodology and research. Studies and discussions on innovative and improved fatigue theory/methods in material constitutive modeling, damage rules/fatigue damage calculation, and fatigue life predictions will be addressed.
Collection
2014-04-01
This technical paper collection will cover various aspects of system durability and system integration pertaining to Diesel Exhaust Emissions Control. It includes publications contributing to the understanding of durability of exhaust catalysts and particulate filters, mechanisms of their performance degradation and possible mitigation strategies, data from the field tests, analysis of the aged catalysts, laboratory and accelerated on-engine aging studies, along with relevant experimental tools and methodology.
Technical Paper
2014-04-01
Takamasa Shimodaira
Abstract The aim discussed in this paper is to show a technique to predict loads input to the wheels, essential to determining input conditions for evaluation of suspension durability, by means of full vehicle simulations using multi body analysis software Adams/Car. In this process, model environments were built to enable reproduction of driving modes, and a method of reproducing the set-up conditions of a durability test vehicle was developed. As the result of verification of the accuracy of the simulations in the target driving modes, good correlation for waveforms can be confirmed. And also confirm a good correlation in relation to changes of input load due to changes in suspension specifications.
Technical Paper
2014-04-01
Alaa El-Sharkawy, Asif Salahuddin, Brian Komarisky
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Technical Paper
2014-04-01
Hong Su
Durability of a product is related to three major factors, the load, structure and material. The durability performance of an automotive product is, therefore, not only depended on the structure configuration, but also on the road load dynamic characteristics (profiles and frequency spectrum), and the material fatigue properties as well. Due to the dynamic nature of vehicle loads, one of the major technical challenges, to the durability design optimization of automotive products, is how to define a set of representative road loads, for fidelity and efficiency, based on the measured proving ground durability data of huge size. This paper presents a procedure of processing the proving ground road loads, for vehicle durability design and optimization of automotive products, based on the statistical characteristics evaluation and fatigue damage equivalency techniques. A practical method for constructing a set of representative road load data, with much shorter time duration, is introduced, which satisfy all statistical property fidelity requirements with respect to the original measured load data.
Technical Paper
2014-04-01
Weiguo Zhang, Rakesh Khurana, Mark Likich, Mac Lynch
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance. The virtual experiments based on an orthogonal array in the parameter design method were conducted by the developed simulation procedure and the optimized design was recommended.
Technical Paper
2014-04-01
David E. Verbitsky
Failure analysis (FA) management is insufficiently described by current standards and literature. Previously proposed three-step systemic FA methodology provides effective and efficient alternative to sporadic FA. Organization, methods and results of the first step of the systemic FA, failure mode analysis (FMA), during product/project life cycle, is described. FMA promptly address ∼80% of all problems and justify/supports further actions using conventional ready techniques and resources. Original subject matter tools (three FMA levels, joint FMA-FMECA-F5 technique, and P5 failure classification) substantiate, facilitate and illustrate FMA. Multiple examples demonstrate FMA strengths and limitations with uniquely broad range of products and applications. Particular attention is paid to rare combination of high quality, reliability and profitability.
Technical Paper
2014-04-01
James G. McLeish, Russell Haeberle
Quality, Reliability, Durability (QRD) and Safety of vehicular Electrical/Electronics (E/E) systems traditionally have resulted from arduous rounds of Design-Built-Test-Fix (DBTF) Reliability and Durability Growth Testing. Such tests have historically required 12-16 or more weeks of Accelerated Life Testing (ALT), for each round of validation in a new product development program. Challenges have arisen from: The increasing number of E/E modules in today's vehicle places a high burden on supplier's test labs and budgets. The large size and mass of electric vehicle power modules results in a lower test acceleration factors which can extend each round of ALT to 5-6 months. Durability failures tend to occur late in life testing, resulting in the need to: perform a root cause investigation, fix the problem, build new prototype parts and then repeat the test to verify problem resolutions, which severely stress program budgets and schedules. To resolve these challenges, automakers and E/E suppliers are moving to Physics of Failure (PoF) based durability simulations and reliability assessment solutions performed in a Computer Aided Engineering (CAE) Environment.
Technical Paper
2014-04-01
Andre Kleyner
This paper discusses the effect of the field stress variance on the value of demonstrated reliability in the automotive testing. In many cases the acceleration factor for a reliability demonstration test is calculated based on a high percentile automotive stress level, typically corresponding to severe user or environmental conditions. In those cases the actual field (‘true’) reliability for the population will be higher than that demonstrated by a validation test. This paper presents an analytical approach to estimating ‘true’ field reliability based on the acceleration model and stress variable distribution over the vehicle population. The method is illustrated by an example of automotive electronics reliability demonstration testing.
Technical Paper
2014-04-01
Christian Scheiblegger, Nantu Roy, Orlando Silva Parez, Andrew Hillis, Peter Pfeffer, Jos Darling
Abstract Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation. To improve bushing modeling of cab/box mounts for heavy duty/light duty trucks, a practical approach to model non-linear bushing dynamic characteristics has been tested and validated against standard bushing models.
Article
2014-03-24
Massachusetts will be the home, and MIT the beneficiary, of a new FAA-designated unmanned aircraft test site just an hour and a half from campus. MIT classes and researchers developing unmanned aerial vehicles and their associated systems will be able to take advantage of the facility located at Joint Base Cape Cod, according to MIT Professor Jonathan How of the Department of Aeronautics and Astronautics.
Standard
2014-03-17
This document (Technical Specification) gives information about qualification rules and the relation between the different specification parts involved, such as Technical Specification (TS), Material Specification (MS), and Purchasing Specification (PS). The link to material qualification and qualified products is presented.
Standard
2014-03-17
This standard establishes the physical item marking requirements for identificationpurposes for copper and copper-base alloy mill products procured and issued for government activities. Shipment and inspection accpetance markings are not within the scope of this standard.
Article
2014-03-12
DGE Inc.'s HMIts, which simulates a user’s speech and touch and then validates the response of the infotainment system, enables OEMs and Tier suppliers to perform repetitive testing on any HMI/infotainment system in a controlled environment, ensuring accurate results and eliminating the need for time-consuming and labor-intensive manual test plans.
Article
2014-03-12
dSPACE’s latest solution for electric motor testing combines SCALEXIO hardware-in-the-loop (HIL) simulation technology with an DS2655 FPGA base module and a scalable electronic load to enable users to test electric motor control systems in a more realistic environment by emulating the real motor and generator currents.
Article
2014-03-11
The Miniscan IRXpert analyzer from AMETEK Petrolab Co. is a portable multi-fuel analyzer for gasoline, diesel, and biodiesel blends incorporating mid-IR and near-IR spectroscopy to achieve accuracy of fuel properties. It will be displayed a the SAE 2014 World Congress in Detroit April 8-10.
Article
2014-03-10
Billing itself as the "first-ever open-source race team," Perrinn myTeam is inviting students, professional engineers, and others to contribute and share data for development of a possible sports car entry at Le Mans in 2015.
Article
2014-03-10
Engineers at NASCAR's Research & Development Center in Concord, NC, recently performed three separate window net and window net mounting tests and used them to design an improved window net mounting system for the 2013 season.
Article
2014-03-10
Jesse Garant & Associates (JG&A) Metrology Center offers industrial CT scanning focused on 3-D internal part inspection services using industrial computed tomography equipment.
Article
2014-03-10
CD-adpaco fills the design testing void with multidisciplinary design exploration (MDX), a methodology for automatically testing designs from early in the concept stage.
Article
2014-03-10
NanoFocus’ μsurf cylinder tool, which will be displayed at the SAE 2014 World Congress April 8-10 in Detroit, provides a nondestructive technique for high-resolution 3-D measurements of the inside of cylinder bores and liners.
Article
2014-03-03
One of the subject areas garnering the most attention at the SAE 2014 World Congress is aerodynamics because of its effect on vehicle efficiency through drag reduction and the potential for real-world fuel economy gains.
Standard
2014-03-01
This standard defines requirements for the preparation and execution of the audit process. Additionally, it defines the content and composition for the audit reporting of conformity and process effectiveness to the 9100-series standards, the organization’s quality management system documentation, and customer/regulatory requirements.
Article
2014-02-26
Technical sessions focused on interiors at the SAE 2014 World Congress span the designated technology areas, including electronics, materials, and safety/testing. One example in the electronics area, to take place April 8 at 9:30 a.m., covers multi-media systems. As part of the discussion, Takata researchers will present new touchscreen concepts such as a smart display surface that could benefit steering-wheel design.
Standard
2014-02-26
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1.
Standard
2014-02-21
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5.
Viewing 91 to 120 of 3317

Filter

  • Article
    874
  • Book
    12
  • Collection
    8
  • Magazine
    118
  • Technical Paper
    1006
  • Standard
    1299
  • Article
    1299