Display:

Results

Viewing 61 to 90 of 3516
2015-10-26
Article
Just as engineers of consumer vehicles are being asked to shorten development cycles and improve performance, reliability, and safety, so are developers of off-highway vehicles, such as construction equipment and agricultural machinery.
2015-10-19
Standard
AMSSTD595
This standard presents the colors used by Government Activities in a format suitable for color selection, color matching and for quality control inspection. This document describes the designation and use of the color chips of this standard. Formats for color chip representation and precise color matching formats are as described below:
2015-10-03
Article
Technologies considered necessary for unmanned aircraft systems (UAS) to safely avoid other aircraft while moving through airspace recently were put to the test using NASA's remotely piloted Ikhana aircraft.
2015-09-29
Technical Paper
2015-01-2756
Basaran Ozmen, Mehmet Bakir, Murat Siktas, Serter Atamer, Roman Teutsch
Abstract Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.
2015-09-29
Technical Paper
2015-01-2816
Andrei Radulescu, Leighton Roberts, Eric Yankovic
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement for maximum output and improve fuel economy by adjusting the number of active cylinders in combustion engines. A Switching Roller Finger Follower (SRFF) is an economic solution for CDA that minimizes changes and preserves the overall width, height, or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of either transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system to meet the reliability for gasoline passenger car engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds and the system capacity of switching between high and low engine displacement within one camshaft revolution.
2015-09-29
Technical Paper
2015-01-2865
Damodar Kulkarni, Pankaj Deore
Abstract Cost-reduction and cost competitiveness have emerged as major strategic tools to an enterprise and are being used all over the world to fight for survival as well as maintain sustainable growth. Maximization of value-creation by enriching the planet, people and the economy should be the key drivers leading to cost-reduction strategies in any business. The main objectives of this paper are to explain the Processes and Principles of Cost-reduction in technology-transfer to low-cost emerging economies to achieve sustainable cost-reduction and create a culture of cost-consciousness throughout an organization.
2015-09-29
Technical Paper
2015-01-2864
Xinyu Ge, Jarrett Corcoran, Paul Gamble
With stringent emission regulations, many subsystems that abate engine tailpipe-out emissions become a necessary part for engines. The increased level of complexity poses technical challenges for the quality and reliability for modern engines. Among the spectrum of quality control methodologies, one conventional methodology focuses on every component's quality to ensure that the accumulative deviation is within predetermined limits. This conventional methodology tightens the component tolerance during the manufacturing process and typically results in increased cost. Another conventional methodology that is on the other side of the spectrum focuses on tailoring an engine calibration solution to offset the manufacturing differences. Although the tailored engine calibration solution reduces manufacturing cost for components, it increases the development and validation cost for engines.
2015-09-29
Technical Paper
2015-01-2818
Scott Shafer
Abstract All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
2015-09-29
Technical Paper
2015-01-2757
Deepak Anand Subramanian, Nithya Sridhar, N. Obuli Karthikeyan, V. Srinivasa Chandra
Abstract The Indian automotive sector is experiencing a major shift, focusing predominantly towards the levels of quality, reliability and comfort delivered to the customer. Since the entry of global players into the market, there is a rising demand for timely product launches with utmost priority to reliability. In any vehicle, engine isolation systems play a critical role in isolating the engine vibrations from the vehicle chassis. This project details on how testing can aid in reducing the launch time as well as estimating the reliability of the component when used in a different application/vehicle. It proposes a methodology to formulate a life model for the engine mount considering various combinations of predictor parameters affecting its performance over its design life. In order to maintain good correlation with the field (which considers the loading pattern and the environmental factors), warranty data was analyzed and the predictors were chosen appropriately.
2015-09-29
Journal Article
2015-01-2758
Zhigang Wei, Robert Rebandt, Michael Start, Litang Gao, Jason Hamilton, Limin Luo
In product design and development stage, validation assessment methods that can provide very high reliability and confidence levels are becoming highly demanded. High reliability and confidence can generally be achieved and demonstrated by conducting a large number of tests with the traditional approaches. However, budget constraints, test timing, and many other factors significantly limit test sample sizes. How to achieve high reliability and confidence levels with limited sample sizes is of significant importance in engineering applications. In this paper, such approaches are developed for two fundamental and widely used methods, i.e. the test-to-failure method and the Binomial test method. The concept of RxxCyy (e.g. R90C90 indicates 90% in reliability and 90% in confidence) is used as a criterion to measure the reliability and confidence in both the test-to-failure and the Binomial test methods.
2015-09-27
Technical Paper
2015-01-2666
Scott Lambert
Abstract The Global Brake Safety Council sees an increase in disc brake pads that are prematurely replaced before the end of the friction lining life cycle, due to: 1 Rust related issues such as separation of friction lining from the disc brake shoe2 Fluctuation in critical dimensions. A leading cause for both issues is the use of mill scale steel, or ‘black steel’ (non-pickled and oiled). In the North American aftermarket, as there are little or no steel specifications for disc brake shoes, black steel is increasingly used. GBSC conducted research of discarded disc brake pads from job-shops and engaged in discussions with metallurgists, major pad manufacturers and OE brake foundation engineers to identify root causes of premature pad replacement and the effects of black steel used for disc brake shoe manufacturing. Mill scale is embedded in and around the bond line of the friction lining and the disc brake shoe, causing a weaker bond, susceptible to rust jacking.
2015-09-27
WIP Standard
AMS2809B
This specification covers procedures for identifying wrought products of titanium and titanium alloys.
2015-09-22
WIP Standard
AMS2484C
This specification covers the requirements for an inorganic blackening solution for steel, applied at room temperature.
2015-09-22
WIP Standard
AMS2416M
This specification covers the engineering requirements for an electrodeposit of cadmium into an electrodeposit of nickel on carbon, low-alloy, and corrosion-resistant steels.
2015-09-22
WIP Standard
AMS2486F
This specification establishes the requirements for a chemical conversion coating on titanium alloys.
2015-09-22
WIP Standard
AMS2418J
This specification covers the requirements for electrodeposited copper.
2015-09-22
WIP Standard
AMS2700F
This specification covers the requirements for a process to assure removal of free iron or other less noble contaminants from the surfaces of corrosion resistant steel parts.
2015-09-21
Article
Principal Engineer considers acoustic holography as the next step in the further development of its new noise measurement system.
2015-09-15
Technical Paper
2015-01-2500
Brigitte Vasques
The drilling of multi layers composite stacks remains a common process in aerospace industry. Research of productive solutions such as one shot and dry drilling operations to avoid reaming and lubrication are contemplated by aerospace customers on titanium multi layers composite applications. Those solutions permit to reduce the number of finishing operation and drilling time. Special ADEs (Advanced Drilling Equipment) machines are used to drill aircraft components in limited access areas. Parameters such as cutters, ADE machines type, rigidity clamping, cutting conditions, speed, feed, chip fragmentation and extraction are related and influence the holes quality. Titanium (TA6V) thickness and cutting configuration influence the cutter wear development. In this work, ADE and specific cutter geometries developed by Apex are used for the one shot dry drilling of titanium. Carbide cutters have been chosen for their resistance to the heat developed by titanium drill.
2015-09-15
Technical Paper
2015-01-2549
Marc-André Léonard, Jean-François Boland, Christophe Jégo, Claude Thibeault
Abstract Design assurance guidance such as DO-254, and commercial off the shelf (COTS) increasing popularity in high critical mission have pushed the validation and verification methodologies to improve by integrating fault tolerance analysis in reliability assessment. A novel methodology for analysing the sensitivity of digital designs to single event upsets (SEU) is proposed. We first characterize basic combinational circuit models using fault injection via mutation technique at low level of abstraction. Error analysis is performed at primary outputs to identify patterns that are collected in a faulty behaviour library. This library is then used at a high level of abstraction to execute a sensitivity analysis on a digital design model. A reliability report is then generated showing the soft error rate (SER) and the benign errors count. We proved our methodology by analysing the radiation sensitivity of a discrete wavelet transform architecture using two different sets of data.
2015-09-15
Technical Paper
2015-01-2615
Donald Jasurda
The aerospace industry is continually becoming more competitive. With an aircraft's large number of components, and the large supplier base used to fabricate these components, it can be a daunting task to manage the quality status of all parts in an accurate, timely and actionable manner. This paper focuses on a proof of concept for an aircraft fuselage assembly to monitor the process capability of machined parts at an aircraft original equipment manufacturer (OEM) and their supply chain. Through the use of standardized measurement plans and statistical analysis of the measured output, the paper will illustrate how stakeholders can understand the process performance details at a workcell level, as well as overall line and plant performance in real time. This ideal process begins in the product engineering phase using simulation to analyze the tolerance specifications and assembly process strategy, with one of the outputs being a production measurement plan.
2015-09-15
Technical Paper
2015-01-2555
Ephraim Suhir, Alain Bensoussan, Johann Nicolics
There is a concern that the continuing trend on miniaturization (Moore's law) in IC design and fabrication might have a negative impact on the device reliability. To understand and to possibly quantify the physics underlying this concern and phenomenon, it is natural to proceed from the experimental bathtub curve (BTC) - reliability “passport” of the device. This curve reflects the combined effect of two major irreversible governing processes: statistics-related mass-production process that results in a decreasing failure rate with time, and reliability-physics-related degradation (aging) process that leads to an increasing failure rate. It is the latter process that is of major concern of a device designer and manufacturer. The statistical process can be evaluated theoretically, using a rather simple predictive model.
2015-09-15
Journal Article
2015-01-2388
Luis Rabelo, Tom Clark
Abstract Although a multitude of anomaly detection and fault isolation programs can be found in the research, there does not appear to be any work published on architectural templates that could take advantage of multiple programs and integrate them into the desired systems. More specifically, there is an absence of a methodological process for generating anomaly detection and fault isolation designs to either embed within new system concepts, or supplement existing schemes. This paper introduces a new approach based on systems engineering and the System Modeling Language (SysML). Preliminary concepts of the proposed approach are explained. In addition, a case study is also mentioned.
2015-09-15
WIP Standard
AMS2303G
This specification covers steel cleanliness requirements for aircraft-quality ferro-magnetic, hardenable corrosion-resistant steels by magnetic particle inspection methods. Applicable primarily to blooms, billets, tube rounds, stock for forging or flash welded rings, slabs, bars, sheet, strip, plate, tubing, and extrusions used in fabricating parts subject to magnetic particle inspection, but may be used for qualification of a heat melt, or lot of steel.
2015-09-15
WIP Standard
AMS2371K
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought corrosion and heat-resistant steel and alloy products and of forging stock.
2015-09-15
WIP Standard
AMS2370L
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought carbon and low-alloy steel products and of forging stock.
2015-09-11
Article
Endurica targets tire and rubber product developers with new software release. CAE software adds features for the analysis of rolling structures, self-heating, wrinkling, and cavitation.
2015-09-06
Technical Paper
2015-24-2526
Borislav Klarin, Thomas Resch, Chiara Sessarego, Giorgio Spanu, Gianni Lamonaca
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
2015-08-27
Standard
J2654_201508
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE-This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE-The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
2015-08-26
Article
TECAT has developed a system to measure torque on a flexplate accurately and in-situ.
Viewing 61 to 90 of 3516

Filter