Display:

Results

Viewing 1 to 30 of 3448
2015-09-29
Technical Paper
2015-01-2865
Damodar Kulkarni, Pankaj Deore
Cost-reduction and cost competitiveness have emerged as major strategic tools to an enterprise and are being used all over the world to fight for survival as well as maintain sustainable growth. Maximization of value-creation by enriching the planet, people and the economy should be the key drivers leading to cost-reduction strategies in any business. The main objectives of this paper are to explain the Processes and Principles of Cost-reduction in technology-transfer to low-cost emerging economies to achieve sustainable cost-reduction and create a culture of cost-consciousness throughout an organization. DivgiWarner has not only designed and developed but has also been practicing unique processes of cost-reduction utilizing various tools as, 1. Value Analysis and Value Engineering 2. Cost-reduction through productivity improvement 3. Supply Chain Management ( SCM) 4. Lean Manufacturing 5. Total Quality Management (TQM) 6. Control over fixed Costs 7.
2015-09-29
Technical Paper
2015-01-2864
Xinyu Ge, Jarrett Corcoran, Paul Gamble
With stringent emission regulations, many subsystems that abate engine tailpipe-out emission become necessary part for engines. With the increased levels of complexity, end users also require increased level of quality for modern engines. Among the spectrum of quality control methodologies, one extreme example is focused on very components’ quality to ensure the accumulative deviation is within predetermined limits. These measures tighten the component tolerance during manufacturing process and typically results in increased cost. Another extreme example is on the other side of the methodologies spectrum. The methodology is to tailor the engine calibration solution to offset the manufacturing difference. Although the tailored engine calibration solution reduces manufacturing cost for components, it increases the calibration and validation cost for engines. Given the cost and time constraints, system integration plays an important role in engine development.
2015-09-29
Technical Paper
2015-01-2756
Basaran Ozmen, Mehmet Bakir, Murat Siktas, Serter Atamer, Roman Teutsch
Securing the desired durability of suspension components is one of the most important topics for the vehicle designers because these components undergo multiaxial variable amplitude loading in the vehicle. Leaf springs are essential for the suspension system of trucks and should be considered as a security relevant part in the product development phase. In order to guide the engineers in the design and testing department, a simulation method was developed as explained in the paper “Bakir, M., Siktas, M., and Atamer, S., "Comprehensive Durability Assessment of Leaf Springs with CAE Methods," SAE Technical Paper 2014-01-2297, 2014”. In this new study, the main aim is to present the validation of this newly developed CAE method for the durability of leaf springs depending on the results from testing and measurement in the rough road and test bench.
2015-09-29
Technical Paper
2015-01-2757
Deepak Anand Subramanian, Nithya Sridhar, N. Obuli Karthikeyan, V. Srinivasa Chandra
The Indian automotive sector is experiencing a major shift, focusing predominantly towards the levels of quality, reliability and comfort delivered to the customer. Since the entry of global players into the market, there is a rising demand for timely product launches with utmost priority to reliability. In any vehicle, suspension plays a critical role in transferring the road inputs onto the vehicle components, therefore, responsible for both ride comfort and load transfer. Engine mount, being an integral part of this system, takes care of isolating the inertial forces between the engine and the chassis. This project details on how testing can aid in reducing the launch time as well as ensuring desired degree of reliability. It proposes a methodology to formulate a life model for the engine mount considering various combinations of predictor parameters affecting its performance over its design life.
2015-09-29
Journal Article
2015-01-2758
Zhigang Wei, Robert Rebandt, Michael Start, Litang Gao, Jason Hamilton, Limin Luo
Bench testing is commonly used to construct fatigue design curves, which are used for the durability and reliability assessment of engineering components subjected to cyclic loading. Several criteria, such as R90C90 and R99C50, are widely used in automotive industry to construct fatigue design curves for a typical testing sample allocation, i.e. two stress/load levels and 6 data points at each stress/load levels. In order to reduce the test sample size and associated testing cost, recently, a Bayesian statistics based design curve construction method has been successfully developed. The Bayesian method is based on a large amount of reliable historical fatigue test data, the associated probabilistic distributions of the mean and standard deviation of the failure cycles, and an advanced acceptance-rejection resampling algorithm.
2015-09-29
Technical Paper
2015-01-2816
Andrei Radulescu, Leighton Roberts, Eric Yankovic
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement for maximum output and improve fuel economy by adjusting the number of active cylinders in combustion engines. A Switching Roller Finger Follower (SRFF) is an economic solution for CDA that minimizes changes and preserves the overall width, height, or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of either transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system to meet the reliability for gasoline passenger car engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds and the system capacity of switching between high and low engine displacement within one camshaft revolution.
2015-09-29
Technical Paper
2015-01-2818
Scott Shafer
Abstract All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
2015-09-27
Technical Paper
2015-01-2666
Scott Lambert
The Global Brake Safety Council sees an increase in disc brake pads that are prematurely replaced before the end of the friction lining life cycle, due to: Rust related issues such as separation of friction lining from the disc brake shoe Fluctuation in critical dimensions A leading cause for both issues is the use of mill scale steel, or ‘black steel’ (non-pickled and oiled). In the North American aftermarket, as there are little or no steel specifications for disc brake shoes, black steel is increasingly used. GBSC conducted research of discarded disc brake pads from job-shops and engaged in discussions with metallurgists, major pad manufacturers and OE brake foundation engineers to identify root causes of premature pad replacement and the effects of black steel used for disc brake shoe manufacturing. Mill scale is embedded in and around the bond line of the friction lining and the disc brake shoe, causing a weaker bond, susceptible to rust jacking.
2015-09-15
Technical Paper
2015-01-2615
Donald Jasurda
The aerospace industry is continually becoming more competitive. With an aircraft’s large number of components, and the large supplier base used to fabricate these components, it can be a daunting task to manage the quality status of all these parts in an accurate, timely and actionable manner. This paper focuses on an aircraft door assembly case study monitoring the process capability of machined parts at an aircraft OEM and their supply chain. Through the use of standardized measurement plans and statistical analysis of the measured output, the paper will illustrate how stakeholders can understand the process performance details at a workcell level, as well as overall line or plant performance in real time, in addition to automating standardized reporting. This ideal process begins in the product engineering phase using simulation to analyze the tolerance specifications and assembly process strategy, with one of the outputs being a production measurement plan.
2015-09-15
Technical Paper
2015-01-2500
Brigitte Vasques
The drilling of multi layers composite stacks remains a common process in aerospace industry. Research of productive solutions such as one shot and dry drilling operations to avoid reaming and lubrication are contemplated by aerospace customers on titanium multi layers composite applications. Those solutions permit to reduce the number of finishing operation and drilling time. Special ADEs (Advanced Drilling Equipment) machines are used to drill aircraft components in limited access areas. Parameters such as cutters, ADE machines type, rigidity clamping, cutting conditions, speed, feed, chip fragmentation and extraction are related and influence the holes quality. Titanium (TA6V) thickness and cutting configuration influence the cutter wear development. In this work, ADE and specific cutter geometries developed by Apex are used for the one shot dry drilling of titanium. Carbide cutters have been chosen for their resistance to the heat developed by titanium drill.
2015-09-15
Technical Paper
2015-01-2549
Marc-André Léonard, Jean-François Boland, Christophe Jégo, Claude Thibeault
Abstract Design assurance guidance such as DO-254, and commercial off the shelf (COTS) increasing popularity in high critical mission have pushed the validation and verification methodologies to improve by integrating fault tolerance analysis in reliability assessment. A novel methodology for analysing the sensitivity of digital designs to single event upsets (SEU) is proposed. We first characterize basic combinational circuit models using fault injection via mutation technique at low level of abstraction. Error analysis is performed at primary outputs to identify patterns that are collected in a faulty behaviour library. This library is then used at a high level of abstraction to execute a sensitivity analysis on a digital design model. A reliability report is then generated showing the soft error rate (SER) and the benign errors count. We proved our methodology by analysing the radiation sensitivity of a discrete wavelet transform architecture using two different sets of data.
2015-09-15
Technical Paper
2015-01-2555
Ephraim Suhir, Alain Bensoussan, Johann Nicolics
It has been lately established (see, e.g., [1]) that the continuing trend on miniaturization (Moore’s Law) in IC design and fabrication might have a negative impact on the device reliability, especially when it comes to deep submicron (DSM) technologies. These are characterized by etching thicknesses below 90nm. In order to understand and to quantify the physics underlying this phenomenon, it is natural to proceed from the experimental bathtub curve (BTC), an experimental reliability “passport” of a population of mass produced devices. As is known, this curve considers and reflects the combined effect of two irreversible processes: statistics-related mass-production process and reliability-physics-related degradation (aging) process. The first process results in a decreasing failure rate with time, while the second process leads to an increasing failure rate. It is this second process that should be of major concern to an IC designer and manufacturer.
2015-09-15
Journal Article
2015-01-2388
Luis Rabelo, Tom Clark
Abstract Although a multitude of anomaly detection and fault isolation programs can be found in the research, there does not appear to be any work published on architectural templates that could take advantage of multiple programs and integrate them into the desired systems. More specifically, there is an absence of a methodological process for generating anomaly detection and fault isolation designs to either embed within new system concepts, or supplement existing schemes. This paper introduces a new approach based on systems engineering and the System Modeling Language (SysML). Preliminary concepts of the proposed approach are explained. In addition, a case study is also mentioned.
2015-09-06
Technical Paper
2015-24-2526
Borislav Klarin, Thomas Resch, Chiara Sessarego, Giorgio Spanu, Gianni Lamonaca
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
2015-08-27
Standard
J2654_201508
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE-This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE-The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
2015-08-26
Article
TECAT has developed a system to measure torque on a flexplate accurately and in-situ.
2015-08-26
Article
Helium leak detection systems are helping transmission suppliers improve quality and reduce the cost of producing new automatic transmissions.
2015-08-25
WIP Standard
AMS2810H
This specification provides requirements for the identification and packaging of sheet, strip, extrusions, and molded parts made of natural rubber, synthetic rubber, reclaimed rubber, and combinations of the above with other materials such as asbestos, cork, and fabrics. AMS2817 covers preferred requirements for identification and packaging of preformed packings.
2015-08-24
Article
Even as simulation and virtual design tools get ever more sophisticated, brick-and-mortar test facilities are as important as ever.
2015-08-24
Article
DTS' TSR data logger line includes a ±20 g sensor range.
2015-08-19
Article
The 2017 GT development program has begun testing in southeastern Michigan, with the exotic American supercars running “naked” as they rack up miles amid daily commuter traffic. Automotive Engineering encountered and photographed one of the off-tool prototypes recently.
2015-08-11
Article
A $2.5 million upgrade turns an existing climatic cell into one of the industry's most capable facilities for 4x4 and AWD vehicle development.
2015-08-10
Article
Tucked within the University of Michigan's Ann Arbor campus is a glimpse of the automotive future. In this episode of SAE Eye on Engineering, Senior Editor Lindsay Brooke looks at Mcity, a new proving ground that will help automakers and suppliers develop automated and driverless car technologies.
2015-07-29
Article
SAKOR Technologies supplies a test system for the Dream Chaser atmospheric flight control system, serving as a spacecraft emulator to test overall system performance.
2015-07-28
Article
The 6DX PRO for gathering kinematic data for research and engineering validation was designed by DTS specifically for occupant dynamics and human injury assessment.
2015-07-24
WIP Standard
AS13005
The project will cover three areas (step 1 New Production): define a standard approach for the internal audit system used by the supplier to ensure that it has the correct scope and effectiveness the effectiveness of AS9100 and Nadcap third party assessment define a standard/common approach for the audit of supplier´s production and process to be used by engine manufacturers, suppliers and the sub tiers based on result/confidence in 1) and 2)
2015-07-23
Article
Physics-based robot simulation leveraging stochastic optimization and game theory will support new NASA missions.
2015-06-30
Article
Off-highway machine mounting systems, especially the cab mounting system, significantly affect the operator comfort in the cab by providing enough damping for a good ride and isolating the structure-borne forces from traveling into the cab.
2015-06-29
WIP Standard
J1555
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only, some operations for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.), and some for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
2015-06-18
Article
Passenger Experience automates cabin completion processes with essential intelligent “building blocks” capturing rules, regulations, and manufacturing knowledge to automate cabin interior design, development, and delivery.
Viewing 1 to 30 of 3448

Filter