Display:

Results

Viewing 1 to 30 of 3561
2016-06-15
Journal Article
2016-01-1852
Ehsan Fatourehchi, Vishak Elisaus, Mahdi Mohammadpour, Stephanos Theodossiades, Homer Rahnejat
Abstract Efficiency and durability are key areas of research and development in modern racing drivetrains. Stringent regulations necessitate the need for components capable of operating under highly loaded conditions whilst being efficient and reliable. Downsizing, increasing the power-to-weight ratio and modification of gear teeth geometry to reduce friction are some of the actions undertaken to achieve these objectives. These approaches can however result in reduced structural integrity and component durability. Achieving a balance between system reliability and optimal efficiency requires detailed integrated multidisciplinary analyses, with the consideration of system dynamics, contact mechanics/tribology and stress analysis/structural integrity. This paper presents an analytical model to predict quasi-static contact power losses in lubricated spur gear sets operating under the Elastohydrodynamic regime of lubrication.
2016-05-14
Article
Ann Arbor, Michigan is fast becoming the world capital of testing and research for connected cars, automated driving, and safety technology.
2016-05-13
Article
KTR has started up a test bench for large couplings that covers a performance range up to 500,000 N∙m at its headquarters in Rheine.
2016-05-13
Article
T/CCI Manufacturing’s Climatic Wind Tunnel in Decatur, IL allows customers to simulate any real-world condition by controlling humidity, wind, temperature, solar and road conditions up to100 mph.
2016-05-13
Article
A modular area view kit (AVK) from First Sensor aids in the setup of 360° all-around view systems for applications in special vehicles and machines.
2016-05-13
Article
Hermetic Seal Corporation (HSC), a unit of AMETEK Interconnect, has expanded its hermetic sealing capabilities to include state-of-the-art hermetic fiber-optic component manufacture.
2016-05-13
WIP Standard
AS13007
1.1.1. This specification defines standardized methods for suppliers to be used when achieving AS9100 compliance. The intent of standardization is to increase supplier efficiency and reduce noncompliance due to from variation in customer to customer detailed requirements for the same basic item.
2016-04-27
Article
Take-it-to-the-limit testing is typically reserved for vehicle development teams, but Jaguar's route and the sensational topography clearly gave Automotive Engineering good insight into F-Pace's dynamic capabilities and its four-year development.
2016-04-24
Article
Consortium of OEMs and suppliers worked on all fronts, while the SAE Interior Climate Control Committee reopened a suite of draft standards to prepare for possible importation of cars with R-744: CO2 as a refrigerant.
2016-04-20
Article
Experts say Phase Change Material (PCM) formulated for high latent heat capacity can provide cabin warmth for a typical U.S. daily commute, with residual capacity insulated for an EV parked during an eight-hour workday.
2016-04-20
Article
Ruetz System Solutions provides an interoperability test platform for Automotive Ethernet that constitutes a component of the test set-up for Open Alliance Layer 1 interoperability tests for ECUs.
2016-04-20
Standard
AS9133A
This standard defines a system for the qualification of standard products for aviation, space, and defense applications. It defines the principles that shall be adhered to when carrying out product qualification; applied in conjunction with the rules and procedures of the CA. The system enables the CA to confirm compliance is achieved and maintained, in accordance with the requirements of its product definition and associated controlling technical specifications by an Original Component Manufacturer (OCM) of standard products. This standard requires an OCM that has been granted product qualification approval to ensure applicable approvals are maintained and renewed in accordance with the CA’s quality system for that qualified product. OCMs and OCM designated Value Added Distributors (VADs) requesting product qualification to this standard, shall as a prerequisite, maintain 9100 standard quality management system certification approval.
2016-04-18
WIP Standard
AS13001A
The standard applies to aero engine suppliers operating a self-release process as a delegated activity from the delegating organization. While primarily developed around the aero engine supply chain requirements, this standard can also be used in other industry sectors where a self-release process may be of benefit.
2016-04-14
Article
Manufacturing and service teams are discovering ways to use AR technology to handle complex systems like wire harnesses.
2016-04-13
Article
The nCode brand of durability, test, and analysis software by HBM introduces nCode VibeSys, a new data processing system designed to help acoustics and vibration engineers.
2016-04-11
Article
Automakers are increasingly employing digital crash test dummies made of zeroes and ones to take the big hits in virtual vehicles.
2016-04-11
Journal Article
2016-01-9081
Sean A. McKelvey, Yung-Li Lee
Abstract Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
2016-04-11
WIP Standard
J2816
The Physics-of-Failure (PoF) is a science-based approach to reliability that uses modeling and simulation to design-in reliability. This approach models the root causes of failures such as fatigue, fracture, wear, and corrosion. Computer-Aided Design (CAD) tools have been developed to address various loads, stresses, failure mechanisms and sites. PoF uses knowledge of basic failure processes to prevent failures through robust design and manufacturing practices, and aims to: - Design-in reliability up front; - Eliminate failures prior to testing; - Increase fielded reliability; - Promote rapid, cost effective deployment of Health and Usage Monitoring Systems (HUMS); - Improve diagnostic and prognostic techniques and processes; and, - Decrease operational and support costs. This guide provides a high level overview of the methodology, process and advantages to performing a PoF assessment.
2016-04-08
WIP Standard
AMS2629E
This specification covers a mixture of liquid hydrocarbons and soluble additives.<p>To provide a standard composition, simulating aviation jet engine fuel. This fluid has been used typically in laboratory tests involving compatibility and interaction with aircraft materials, but usage is not limited to such applications.
2016-04-05
Technical Paper
2016-01-0266
Greg K. Caswell, James McLeish
The use of Micro Electro-Mechanical Systems (MEMS) for measuring accelerations, pressure, gyroscopic yaw rate and humidity in engine controls, inflatable restraint, braking, stability and other safety critical vehicle systems is increasing. Their use in these safety critical systems in high stress automotive environments makes ensuring their reliability and durability essential tasks, especially as the Vehicle System Functional Safety requirements of ISO-26262 are being implemented across the industry. A Design for Reliability (DfR) approach that applies Physics of Failure methods to evaluate and eliminate or mitigate susceptibilities to failure modes of a device during the design of a product is the most effective and efficient way to achieve Functional Safety levels of reliability-durability. MEMS packages exhibit several failure modes that can be predicted as a device is designed using modern Computer Aided Engineering (CAE) software tools.
2016-04-05
Technical Paper
2016-01-0279
Chong Chen, Zhenfei Zhan, Jie Li, Yazhou Jiang, Helen Yu
Abstract To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
2016-04-05
Technical Paper
2016-01-0657
T Sethuramalingam, Chandrakant Parmar, Sashikant Tiwari
Abstract DFSS is a disciplined problem prevention approach which helps in achieving the most optimum design solution and provides improved and cost effective quality products. This paper presents the implementation of DFSS method to design a distinctive cooling system where engine is mounted in the rear and radiator is mounted in the front of the car. In automobile design, a rear-engine design layout places the engine at the rear of the vehicle. This layout is mainly found in small, entry level cars and light commercial vehicles chosen for three reasons - packaging, traction, and ease of manufacturing. In conventional Passenger cars, a radiator is located close to the engine for simple packaging and efficient thermal management. This paper is about designing a distinctive cooling system of a car having rear mounted engine and front mounted radiator.
2016-04-05
Technical Paper
2016-01-0318
Lev Klyatis
Abstract This paper will discuss the problem of improving engineering culture for development reliability, quality, and testing of the automotive industry product. The basic approach relates to other industries too. The paper will consider why it is so important for engineers and managers, and how it relates to Systems Engineering, which simply stated is , a system which is an integrated composite of people, products, and processes that provides a capability to satisfy a stated need or objective. One of the basic problems of management is strategic thinking. Predicting is inaccurate when it is based on information obtained from using traditional approaches of accelerated life testing (ALT) data where the degradation (failure) processes differ substantially from the product’s degradation processes during service life under real world conditions.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
2016-04-05
Technical Paper
2016-01-1369
Pankaj Goverdhan Bhirud, Andrew Blows, Peter Wakelin, Ajay Virmalwar
Abstract Fatigue life predictions using the strain-life method are used in the design of modern light weight vehicle, for the complex loading that occur with the structural durability tests that these vehicles undergo. The accuracy of these predictions is dependent upon the many factors; geometry, loads & materials etc. This paper details a new procedure to ensure the quality and accuracy of the material parameters for the fatigue life prediction software. The material parameters for the solver are obtained by performing strain-controlled fatigue tests. The geometry of the coupons tested is determined by size and thickness of the material specimen that they are machined from and the loading regime in the test. Detailed data analyzed is conducted on these tests and the parameters that are used as input into the CAE strain-life fatigue prediction software are generated.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
Abstract At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and Multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in laboratory. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road.
2016-04-05
Technical Paper
2016-01-1292
Manish Dixit, V Sundaram, Sathish Kumar S
Abstract Noise pollution is a major concern for global automotive industries which propels engineers to evolve new methods to meet passenger comfort and regulatory requirements. The main purpose of an exhaust system in an automotive vehicle is to allow the passage of non-hazardous gases to the atmosphere and reduce the noise generated due to the engine pulsations. The objective of this paper is to propose a Design for Six Sigma (DFSS) approach followed to optimize the muffler for better acoustic performance without compromising on back pressure. Conventionally, muffler design has been an iterative process. It involves repetitive testing to arrive at an optimum design. Muffler has to be designed for better acoustics performance and reduced back pressure which complicates the design process even more.
2016-04-05
Technical Paper
2016-01-0046
Markus Ernst, Mario Hirz, Jurgen Fabian
Abstract A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
2016-04-05
Technical Paper
2016-01-0053
Abhishek Sharma
Abstract Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
2016-04-05
Journal Article
2016-01-0074
Michael Jensen
Abstract Electronics now control or drive a large part of automotive system design and development, from audio system enhancements to improvements in engine and drive-train performance, and innovations in passenger safety. Industry estimates suggest that electronic systems account for more than 30% of the cost of a new automobile and represent approximately 90% of the innovations in automotive design. As electronic content increases, so does the possibility of electronic system failure and the potential for compromised vehicle safety. Even when designed properly, electronics can be the weakest link in automotive system performance due to variations in component reliability and environmental conditions. Engineers need to understand worst-case system performance as early in the design process as possible.
Viewing 1 to 30 of 3561

Filter