Display:

Results

Viewing 1 to 30 of 1047
2015-09-06
Technical Paper
2015-24-2526
Borislav Klarin, Thomas Resch, Chiara Sessarego, Giorgio Spanu, Gianni Lamonaca
Modern engines with low number of cylinders (I4, I3, I2) are typically equipped with a mass balancing unit to reduce free mass forces and moments and to keep powerunit vibrations, transferred via the mounts into the chassis, on an acceptable level and by that meet the required comfort quality. Typical disadvantages of mass balancing systems are increased friction, which reduces the engine efficiency, but also space, costs, increased complexity and negative effect on the engine acoustics. Especially the latter is defined by the design of the drive for the balancer unit. In many cases, this is realized by a gear drive, directly driven from the crankshaft. Therefore, special care has to be taken for the layout of this gear(s) to avoid potential rattle, gear tooth failure and negative noise transfer from gear contact to the housing structure (e.g. increased axial excitation due to selection of helix angle).
2015-06-15
Technical Paper
2015-01-2187
Mark A. Gehringer, Keith Thompson
Abstract This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a rear wheel drive vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback.
2015-06-15
Journal Article
2015-01-2336
Anastasios Arvanitis, Jeff Orzechowski, Todd Tousignant, Kiran Govindswamy
Abstract Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Technical Paper
2015-01-0238
Nick Smith
Abstract Manufacturing companies are benefiting from technology in most key areas of the flow from design through manufacture. This applies to the wire harness industry which is a key element of the modern automotive industry. Wire harness manufacturing engineering, however, is a critical path function that is under severe pressure and yet has been under-served by technology. In some respects it has become the weak link in the chain. Recent innovations in commercial off-the-shelf (COTS) technology are set to change this situation. Software applications are now available to deliver transformational manufacturing engineering automation as well as being able to integrate with technology in other areas of the process. This will enable a digitally continuous data flow that can remove excessive cost, time, and pressure - while helping manufacturers meet the increasing demands of the industry.
2015-04-14
Technical Paper
2015-01-0363
Vasanth Balashunmuganathan, Ramakrishna Nukala, Sathishkumar Sampath Kumar, Murali Govindarajalu
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
2015-04-14
Journal Article
2015-01-0420
Musarrat Jehan, Efstratios Nikolaidis
Abstract There is randomness in both the applied loads and the strength of systems. Therefore, to account for the uncertainty, the safety of the system must be quantified using its reliability. Monte Carlo Simulation (MCS) is widely used for probabilistic analysis because of its robustness. However, the high computational cost limits the accuracy of MCS. Smarslok et al. [2010] developed an improved sampling technique for reliability assessment called Separable Monte Carlo (SMC) that can significantly increase the accuracy of estimation without increasing the cost of sampling. However, this method was applied to time-invariant problems involving two random variables. This paper extends SMC to problems with multiple random variables and develops a novel method for estimation of the standard deviation of the probability of failure of a structure. The method is demonstrated and validated on reliability assessment of an offshore wind turbine under turbulent wind loads.
2015-04-14
Technical Paper
2015-01-0421
Hye Seong Heo, Christoph Pannemann, Yun Kyu Choi, Achim Strass
Abstract This paper presents a reliability study of a directly cooled IGBT module after a test drive of 85,000 Km in a fuel cell electric vehicle, as well as of an indirectly cooled IGBT module after a test drive of 200,000km in a hybrid car on public roads. At the end of the test drive, the inverter units were disassembled and analyzed with regard to the lifetime consumption. First, electrical measurements were carried out and the results were compared with the ones obtained directly after module production (End of Line test). After that, ultrasonic microscopy was performed in order to investigate any delamination in the solder layers. As a third step, an optical inspection was performed to monitor damages in the housing, formation of cracks or degradation of wire bonds. The results show none of the depicted failure modes could be found on the tested power modules after the field test. Obviously, no significant life time consumption could be observed.
2015-04-14
Technical Paper
2015-01-0447
Venkatesh Agaram, Julian Venegas
Abstract System dynamics modeling of complex processes such as product development, manufacturing, and service, is an efficient approach for assessing value potential of different business transformation alternatives at small and large enterprises. Process elements such as generation of concepts, detailed designs, pilot level plant trials, etc. can be modeled including first-pass work, testing and review, rework identification and defect fixing, along with release readiness, staffing, schedule pressures, overtime and many other business metrics. Enterprise level processes, with their complex logic loops, can be represented as a system of coupled nonlinear differential equations, whose solutions can reveal the intricate underlying dynamics. Design of experiments, performed on the system dynamics models representing the business processes, are an inexpensive way of gaining insights into the impact of interactions between the numerous process control variables.
2015-04-14
Journal Article
2015-01-0453
Zhimin Xi, Hao Pan, Yan Fu, Ren-Jye Yang
Abstract To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
2015-04-14
Technical Paper
2015-01-0431
KI Woo Sung, Jong Gurl Kim, Dae-Un Sung, Hye Mi Kim
Abstract This study examined various warranty data analysis methods to identify and study the one most suitable for Hyundai Motor warranty data. The drawbacks of the conventional life table method were overcome to develop an analysis method optimized for vehicle characteristics. The proposed method was examined for its suitability to various applications, such as providing the information necessary for determining the service life of parts, verifying the effects of design changes, and designing warranty and maintenance policies. The analysis data used in this study were derived from the 10-year powertrain parts warranty data of vehicles sold in the USA, South Korea, and China.
2015-04-14
Technical Paper
2015-01-0428
Sida Li, Xiaowu Yang, Bruce Minaker, Xiaojin (Shine) Lan, Mark Villaire
Abstract An accurate bushing model is vital for vehicle dynamic simulation regarding fatigue life prediction. This paper introduces the Advanced Bushing Model (ABM) that was developed in MATLAB® environment, which gives high precision and fast simulation. The ABM is a time-domain model targeting for vehicle durability simulation. It dynamically captures bushing nonlinearities that occur on stiffness, damping and hysteresis, through a time-history-based fitting technique, compensated with frequency dependency functionality. Among the simulated and test-collected bushing loads, good correlations have been achieved for elastomer bushings and hydraulic engine mounts and validated with a random excitation signal. This ABM model has been integrated into a virtual shaker table (from a parallel project) as the engine mount model to simulate the mount load, and has shown acceptable prediction on fatigue damage.
2015-04-14
Journal Article
2015-01-0425
Monica Majcher, Zissimos P. Mourelatos, Vasileios Geroulas, Igor Baseski, Amandeep Singh
Abstract Using the total probability theorem, we propose a method to calculate the failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non-stationary because of the randomness of the input parameters. A space-filling design, such as optimal symmetric Latin hypercube sampling or maximin, is first used to sample the input parameter space. For each design point, the output process is stationary and Gaussian. We present two approaches to calculate the corresponding conditional probability of failure. A Kriging metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure and the failure rate of the dynamic system. The proposed method is demonstrated using a vibratory system.
2015-04-14
Journal Article
2015-01-0438
Ashley Lehman, Vesselin Stoilov, Andrzej Sobiesiak
Abstract This paper describes the application of the Fourier Amplitude Sensitivity Test (FAST) method [1] to investigate the effect of uncertainty in design parameters on the thermal system performance of vehicle underbody components. The results from this study will pinpoint the design parameters which offer the greatest opportunity for improvement of thermal system performance and reliability. In turn, this method can save engineering time and resources. An analytical model was developed for a vehicle underbody system consisting of a muffler, heat shield, and spare tire tub. The output from this model was defined as the temperature of the spare tire tub. The majority of the input parameters in this model deviate from their nominal values due to environmental factors, wear and ageing, and/or variation in the manufacturing process.
2015-04-14
Technical Paper
2015-01-0582
Deepak Ranjan Bhuyan, Sreekanth Netapalli, Sathya Dev, Soundarya Srinivasan
Abstract Springback prediction for stamped components is a challenging task for Automotive Industry. Automotive Manufacturers are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Recent development in Finite Element Analysis (FEA) studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA techniques are trying to close this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool. The behavior of material with different simulation parameters has been studied in this paper and the ones that best correlate with actual data are identified.
2015-04-14
Technical Paper
2015-01-0606
Jiaquan Chen, Min Qin, Lingge Jin, Liu Tao, Yongfeng Jiang, Wei Wang, Yin-Ping Chang
Abstract An automotive vehicle should be designed to satisfy the wants of customers. The key is how to convert voices of customers into engineering languages. In other words, transfer the wants of customers into the right technical characteristics of a vehicle. A questionnaire of customer wants for a CUV (Crossover Utility Vehicle) is created and processed. Using QFD (Quality Function Deployment) and modified KANO model, the relative important degree is obtained from the original relative important degree of customer wants surveyed. Since some information gained is uncertain and the questionnaire sample is limited, a gray correlation analysis method is introduced, which calculates the competitive important degree of customer wants, then the final important degree of customer wants is gained by integrating the relative important degree and the competitive important degree.
2015-04-14
Technical Paper
2015-01-0600
Marc Rosenbaum
Abstract A new generation of 3D inspection machines is now available to verify in line 3D dimensional conformity of complex parts - especially Powertrain ones - with accuracy down to 0.1 μm within manufacturing cycle time of large series. Inspecting in line 100% of production with an accuracy and at speed compatible with the most demanding part accuracy and fastest cycle time is presently already a reality for some large tier1 suppliers in Europe. Purpose of this paper is to introduce this breakthrough technology using state of the art non-contact sensing technology allied with innovative mechanics and the latest developments in 3D metrology software
2015-04-14
Technical Paper
2015-01-0590
Dae-Un Sung, Young Hyun Ryu, Soon Cheol Park
Recently, many kinds of new technology systems are adapted to a new developing vehicle. However the field usage information of a new technology system could not be easily obtained because it has not been used by customers. It is not easy to evaluate the reliability and durability of this system. In this research, the durability test mode of a new Adaptive Front Lighting System (AFLS) with Light Emitting Diodes (LEDs) as a new light source has been developed for a new large luxury sedan vehicle. First of all, the failure mode effect was analyzed by considering failure mechanism for each component. The thermal, vibrational, operational and electrical loads were investigated. The Road Load Data Acquisition (RLDA) technique was used to collect the vibration and temperature of an AFLS in a proving ground. The vibration test mode was designed by a Power Spectral Density (PSD) approach. The customer usage data was used for making the target cycles of operational movement such as swiveling.
2015-04-14
Technical Paper
2015-01-0639
Adebola Ogunoiki, Oluremi Olatunbosun
Abstract This research proposes the use of Artificial Neural Networks (ANN) to predict the road input for road load data generation for variants of a vehicle as vehicle parameters are modified. This is important to the design engineers while the vehicle variant is still in the initial stages of development, hence no prototypes are available and accurate proving ground data acquisition is not possible. ANNs are, with adequate training, capable of representing the complex relationships between inputs and outputs. This research explores the implementation of the ANN to predict road input for vehicle variants using a quarter vehicle test rig. The training and testing data for this research are collected from a validated quarter vehicle model.
2015-04-14
Technical Paper
2015-01-1613
Nikhil Bolar, Thomas Buchler, Allen Li, Jeff Wallace
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The three key requirements of structural performance evaluation for vehicle development are NVH, durability and safety.
2015-04-14
Technical Paper
2015-01-1493
Vinay L. Virupaksha, Stuart Brown
Abstract Research Council for Automotive Repairs (RCAR) has developed a bumper test at 10 km/h to assess the damageability and repairing cost during a low speed collusion. For minimum damage and minimum repairing cost during low speed collusion it is necessary to design a bumper beam which provides structural stiffness and reduced deflection. Often it is challenging to design a front bumper beam to meet all safety requirements including, RCAR, high speed offset barrier and pedestrian protection, since these requirements are not necessarily compatible with each other. Design changes in rails and packaging constraints add to this challenge. In this study, design of six sigma (DFSS) and finite element analysis are used to study the parameters that affect the stiffness and deflection of the front bumper beam.
2015-04-14
Journal Article
2015-01-0146
Salah Alhasia, Sharif Gindy, Selin Arslan, Badih Jawad, Chris Riedel
Abstract As the need for super high speed components (pumps, motors, etc) continue to grow rapidly, so does the need to make measurements at speeds higher than ever before. Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. Such measurements are impossible if bearings fail to perform. This paper will address the dynamic modes a bearing passes through and the potential failure modes associated with each. A review of the state of the art of current failure modes will be given, and then a hypothesis on some new failure modes associated with particular speeds will be discussion. The paper will also describe an apparatus that was designed especially to study these phenomena. Range of speed studied is 0- 60,000 rpm.
2015-04-14
Technical Paper
2015-01-0186
Syed Arshad Kazmi, Jin Seo Park, Jens Harnisch
Abstract End of Line tests are brief set of tests intended to evaluate ECU's in order to ensure correct functioning of its intended functionality. As these tests are executed on the production line, available time to perform these tests is limited. On one hand, faster production demands require these tests and its framework to be designed in a time optimized manner. On the other hand, increase in ECU functionality translates to an increase in test's functional coverage, requiring more time. Therefore the time taken to execute the tests reaches a critical point in overall ECU production. Availability of multicore microcontrollers with increase in clock speed can increase the performance of end of line tests, but design challenges e.g. synchronization do not guarantee a linear performance increase. Therefore, design of test execution framework is absolutely critical to increase performance of test execution.
2015-04-14
Technical Paper
2015-01-0205
Steve Trythall
Abstract Rapid resolution of electrical faults reduces costs, enhances brand image and maximizes vehicle availability. Although diagnostic systems continue to improve, service technicians frequently have to consult schematics, location views and other engineering resources to fix a problem. But this data can be hard to find, hard to understand, and out of date or wrong. This session presents new technology to leverage design data directly into the service domain. The technician is presented only with relevant vehicle-specific data, is able to navigate dynamically through electrical schematics, and can seamlessly link with other resources such as 3D models and repair procedures.
2015-04-14
Technical Paper
2015-01-0487
Lev Klyatis
Abstract This paper will discuss the problem with successful predicting of product performance (reliability, quality, durability, safety, recalls, profit, life cycle cost, and other interconnected technical and economic components of performance). The best component for analysing the performance situation during service life, including predicting, is recalls, because, first, recall accumulates the safety, reliability, durability, quality, profit, and total economic situation. And second, there is open official and objective information about the number of recalls from Government (National Highway Trafic Safety Administration and others), as well as companies-producers. Therefore, for analyzing the situation with the product performance, including predicting, this paper considers the situation with recalls.
2015-04-14
Technical Paper
2015-01-0494
Sulki Seong, Wangoo Kim, Daesung Bae, Seungpyo Lee, Younggeol Cho, Kyeongdeok Yang
Abstract A rotating bearing must have an excellent durability life. Various studies have been conducted for a long time to predict the bearing durability life. However, the bearing durability life has been predicted by an analytic formula in terms of the raceway and ball. A finite element structural analysis has been carried out for a flange, commonly with an assumption of a static load. So it is difficult to consider the dynamic effects (Centrifugal force, Gyroscope effect) of the bearing, which is very important due to its high speed operation. In order to predict the accurate bearing durability life, the dynamic effects must be considered. This paper proposes a method for bearing durability life prediction, considering dynamic effects. Contact between the raceway and ball is one of the important factors to take into account for the dynamic effects of the bearing.
2015-04-14
Technical Paper
2015-01-0471
Apurva Gokhale, Sumeet Parashar, Saket Kansara
Abstract Need for accounting Robustness and Reliability in engineering design is well understood and being researched. However, the actual practice of applying robustness and reliability methods to high fidelity CAE based simulations, especially during optimization is just starting to gain traction in last few years. Availability of computing power is helping the use of such methods, but, at the same time the demand for modeling stochastic behavior with high fidelity CAE simulations and considering large number of stochastic variables still makes it prohibitive. Typically, Robust Design Optimization (RDO) formulations calculate mean and standard deviation of responses based on sampling. On the other hand Reliability Based Design Optimization (RBDO) formulations have been using methods like First Order Reliability Method (FORM) or Second Order Reliability Method (SORM) which require nested optimization to evaluate joint probability distribution and reliability factor.
2015-04-14
Technical Paper
2015-01-0463
Kasiraja Thangapandian, Immanuel Rajkumar
Abstract In recent years the automotive industry is facing unprecedented influx of new technology advancements and ever-increasing consumer demands for media, entertainment and connectivity applications. This drives the automotive industry to deliver the products at a faster pace, thereby reducing time to market which results in issues from end users and dealers. Automotive industries are striving hard to keep pace with these radical changes with increase in software and electronics which in turn necessitates a systematic and effective software engineering approach to deliver high quality product from the core embedded software industry. This paper details how embedded software projects are developed globally and customer issues are collected and analyzed. It also discuss about the method used for performing effective Root cause analysis for identifying the systemic issues and formulating the systemic improvement actions.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Technical Paper
2015-01-1144
Kumaraswamy Hebbale, Farzad Samie, Jonathan Kish
Abstract Dual Clutch Transmissions (DCT) for passenger cars are being developed by OEMs and suppliers. The driving force is the improvement in fuel economy available from manual transmissions together with the comfort of automatic transmissions. A dry clutch system (dDCT) is currently the subject of research, development, and production implementation. One of the key issues in the development of a dDCT is clutch durability. In dry clutches with current linings, above a critical temperature, the friction system starts to suffer permanent damage. In addition, the clutch friction characteristics are a function of the clutch interface temperature. Because a reliable, low-cost temperature sensor is not available for this application, the clutch control engineers rely on a good thermal model to estimate the temperature of the clutches. A thermal model was developed for dry dual clutch transmissions to predict operating temperature of both pressure and center plates during all maneuvers.
Viewing 1 to 30 of 1047

Filter