Display:

Results

Viewing 1 to 30 of 3208
Technical Paper
2014-09-30
James Chinni, Robert Butler, Shu Yang
Abstract Federal Motor Carrier Safety Requirement (FMCSR) 393.76(h) states that “a motor vehicle manufactured on or after July 1, 1971 and equipped with a sleeper berth must be equipped with a means of preventing ejection of the occupant of the sleeper berth during deceleration of the vehicle.” [1] Furthermore, this standard requires that “the restraint system must be designed, installed and maintained to withstand a minimum total force of 6,000 pounds applied toward the front of the vehicle and parallel to the longitudinal axis of the vehicle.” [1] Today, sleeper berths are equipped with sleeper restraint systems that function to contain the sleeper occupant inside the sleeper berth during reasonably foreseeable crashes. To assess the effectiveness of sleeper restraint systems, computer simulation models of the sleeper cab environment and these restraint systems were developed, with a simulated supine occupant in the sleeper. The model was evaluated using two different rollover crash scenarios.
Technical Paper
2014-09-30
Fatih Kosar, Mehmet Burak Yegin, Okan Dogru, Cüneyt Akarsu
Abstract Nowadays, a lightweight component design plays a significant role in both cost of a vehicle and fuel economy in competitive heavy duty truck industry. This paper describes the optimization study of an Anti-Roll Bar (ARB) bracket used in a heavy duty truck. ARB system is used to avoid rolling of a vehicle. In order to measure real forces acting on ARB links, calibration study is performed in laboratory conditions. According to this study, measured strains are correlated with theoretical strain-force curve. After the correlation study, fatigue based topology optimization is made on ARB cast iron bracket according to correlated Road Load Data (RLD) which is performed at Proving Ground. Most of the optimization studies in the literature depend on maximum static loading condition. However, many components or structures in the industry subjected to fluctuating loads when they are in service condition. Small loads in a fluctuating load domain may cause potential danger in the design because there will be damage accumulation on the part when those loads are repeated.
Technical Paper
2014-09-16
Martin Bradish, Obed Sands, Ted Wright, Casey Bakula, Daniel Oldham, William Ivancic, Michael Lewis, Joseph Klebau, Nicholas Tollis, Andrew Jalics
Abstract This paper summarizes the Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This paper covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies' to exchange messages and to perform audio tests of both inbound and outbound channels. This paper describes each test performed, defines the test, the data, and provides conclusions and recommendations.
WIP Standard
2014-08-18
This SAE Standard is intended to be used as a guide for manufacturers and users of general purpose industrial machines to provide a reasonable degree of protection for personnel during normal operation and servicing. This document excludes skid steers which are covered by SAE J1388. Avoidance of accidents also depends upon the care exercised by such persons (see SAE J153). Inclusion of this standard instate, federal, or any laws or regulations where flexibility of revision is lacking is discouraged.
WIP Standard
2014-07-18
The terms included in the Glossary are general in nature and may not apply to all manufacturers’ systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
Standard
2014-07-11
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard
2014-07-09
The guidelines for operator and bystander protection in this recommended practice apply to towed, semimounted or mounted flail mowers and flail power rakes when powered by a propelling tractor or machine of at least 15 kw (20 hp), intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries and along roadways and highways. The use of the word "industrial" is not to be confused with "in-plant industrial equipment". This document does not apply to: 1. Turf care equipment primarily designed for personal use, consumption or enjoyment of a consumer in or around a permanent or temporary household or residence. 2. Machines designed primarily for agricultural purposes but which may be used for industrial use. 3. Self powered or self propelled mowers or mowing machines. Where other standards are referenced, such reference applies only to the document identified, not revisions thereof. 1.1 Purpose—To establish guidelines for operator and bystander protection for flail mowers and flail power rakes whose intended use falls within the scope of this document.
Standard
2014-07-09
This SAE Standard establishes performance criteria for towed, semi-mounted, or mounted and arm type rotary mowers with one or more blade assemblies of 77.5 cm blade tip circle diameter or over, mounted on a propelling tractor or machine of at least 15 kW, intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries, and along roadways and highways. The use of the word “industrial” is not to be confused with “in-plant industrial equipment.” This document does not apply to: a. Turf care equipment primarily designed for personal use, consumption, or enjoyment of a consumer in or around a permanent or temporary household or residence. b. Equipment designed primarily for agricultural purposes but which may be used for industrial use. c. Self-powered or self-propelled mowers or mowing machines.
Standard
2014-07-02
This SAE Recommended Practice specifies performance requirements for the strength of seat belt anchorages attached to vehicle structure or to the seat assemblies as installed in the motor vehicle. (This document supersedes the Performance Requirements Section of SAE J787b.) Design recommendations and test procedures are specified in SAE J383 and SAE J384, respectively.
Standard
2014-06-24
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentiall ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
Standard
2014-06-20
This SAE Aerospace Recommended Practice (ARP) provides design guidance and a method for testing thermal performance of airplane in-flight food storage carts. It is noted that thermal performance criteria is not part of AS8056.
WIP Standard
2014-06-16
This recommended practice is a source of information for body and trim engineers and represents existing technology in the field of on-highway vehicle seating systems. It provides a more uniform system of nomenclature, definitions of functional requirements, and testing methods of various material components of motor vehicle seating systems.
WIP Standard
2014-06-09
This document recommends contents for Emergency Medical Kits, including medications and instrumentation, intended for use on passenger-carrying aircraft serviced by at least 1 flight attendant. Recommended practices for carriage of, access to, and maintenance of Emergency Medical Kits are also included.
Standard
2014-06-04
Illustrations used here are not intended to include all existing industrial or agricultural machines, or to be exactly descriptive of any particular machine. They have been picked to describe the principles to be used in applying this standard. Purpose—This Standard provides names of many of the major components and parts peculiar to agricultural and industrial rotary, flail and sickle bar type mowers. NOTE—Where two part names are shown separated by a slash, the first name is the preferred terminology.
WIP Standard
2014-04-30
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design and location of flight attendant stations, including emergency equipment installations at or near such stations, so as to enable the flight attendant to function effectively in emergency situations, including emergency evacuations. Recommendations regarding design of flight attendant stations apply to all such stations; recommendations regarding location apply to those stations located near or adjacent to floor level exits.
WIP Standard
2014-04-30
This SAE Aerospace Recommended Practice (ARP) provides information and recommended guidelines for handling carry-on baggage prior to emergencies and during the emergency evacuation of transport category aircraft. Recommendations are provided on limiting the size, amount, and weight of carry-on baggage brought into the cabin, improved stowage of carry-on baggage to minimize hazards to passengers in flight and during emergency evacuations, and procedures to ensure carry-on baggage is not removed during an emergency evacuation.
Standard
2014-04-14
These recommendations are provided to aid the international air transport industry by identifying a standard, minimum amount of safety instructions that should be given to sight-impaired passengers. This document is not meant to address problems associated with communicating safety information to sight- impaired passengers who are also hearing impaired or non- conversant in the language(s) used by the cabin crew to disseminate general safety information to passengers. Aircraft operators are encouraged to customize the safety instructions for their own operations in order to ensure that required safety information is provided to sight-impaired passengers.
WIP Standard
2014-04-02
This document provides guidance concerning the maintenance and serviceability of oxygen cylinders beginning with the quality of oxygen that is required, supplemental oxygen information, handling and cleaning procedures, transfilling and marking of serviced oxygen assemblies. This document attempts to outline in a logical sequence oxygen quality,serviceability and maintenance of oxygen cylinders.
Technical Paper
2014-04-01
Baeyoung Kim, Kangwook Lee, Jeong Keun Lee, June-Young Song
Abstract The role of CAB is protecting the passenger's head during rollover and side crash accidents. However, the performance of HIC and ejection mitigation has trade-off relation, so analytical method to satisfy the HIC and ejection mitigation performance are required. In this study, 3 types of CAB were used for ejection mitigation analysis, drop tower analysis and SINCAP MDB analysis. Impactor which has 18kg mass is impacting the CAB as 20KPH velocity at six impact positions for ejection mitigation analysis. In drop tower analysis, impactor which has 9kg mass is impacting the CAB as 17.7KPH velocity. Acceleration value was derived by drop tower analysis and the tendency of HIC was estimated. Motion data of a vehicle structure was inserted to substructure model and the SID-IIS 5%ile female dummy was used for SINCAP MDB analysis. As a result, HIC and acceleration values were derived by MDB analysis. As a result of ejection mitigation analysis, the impactor was ejected in type 1 of the CAB but the impactor was not ejected in type 2 and type 3.
Technical Paper
2014-04-01
Todd MacDonald, Moustafa EL-Gindy, Srikanth Ghantae, Sarathy Ramachandra, David Critchley
Abstract A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs. While a new FUPD is developed and tested which highlights benefits of deflecting the passenger vehicle in small overlap cases, a dual stage FUPD is proposed revealing potential benefits in utilizing the radiator to absorb some collision energy.
Technical Paper
2014-04-01
Monica Majcher, Hongyi Xu, Yan Fu, Ching-Hung Chuang, Ren-Jye Yang
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating. These call for identifying the most appropriate multi-objective optimization algorithm to solve this type of vehicle restraint system design problem.
Technical Paper
2014-04-01
Grant Hankins, Kenneth Krajnik, Bradley Galedrige, Shahab Sakha, Peter Hylton, Wendy Otoupal
Abstract A number of performance and safety related aspects of motorsports have begun to receive increased attention in recent years, using the types of engineering analysis common to other industries such as aerospace engineering. As these new engineering approaches have begun to play a larger role in the motorsports industry, there has been an increase in the use of engineering tools in motorsports design and an increase in the inclusion of motorsports in the engineering education process. The design, modeling, and analysis aspects of a recent project examining the design of roll cages for American short-track open-wheel racing cars will be discussed in this paper. Roll cage structures were initially integrated into cars of this type in the 1960s. Countless lives have been saved and serious injuries prevented since the introduction of cages into these types of cars. However, the general configuration of these cages has not seen significant change or improvement in the four decades since their introduction.
Technical Paper
2014-04-01
Jeong Keun Lee, Byung-Jae Ahn, Ye Ri Hong
Abstract In current inflatable curtain airbag development process, the curtain airbag performance is developed sequentially for the airbag coverage, FMVSS 226, FMVSS 214 and NCAP. Because the FMVSS 226 for the ejection mitigation and the NCAP side impact test require the opposite characteristics in terms of the dynamic stiffness of the inflatable curtain airbag, the sequential development process cannot avoid the iteration for dynamic stiffness optimization. Airbag internal pressure characteristics are can be used to evaluate the airbag performance in early stage of the development process, but they cannot predict dynamic energy absorption capability. In order to meet the opposite requirements for both FMVSS 226 and NCAP side impact test, a test and CAE simulation method for the inflatable curtain airbag was developed. The purpose of this study is to standardize the test setup for comparing the energy absorption capability of inflatable curtain airbag and to make criteria for meeting both FMVSS 226 and NCAP early in the program.
Technical Paper
2014-04-01
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers. In evaluating rollover occupant protection system performance, various studies have recognized and demonstrated the upward and outward excursion of belted occupants that occurs during the airborne phase of a rollover, as well as excursion from vehicle-to-ground impacts.
Technical Paper
2014-04-01
Mark William Arndt, John Wiechel
Abstract Assuming rigid body motion, recorded acceleration and recorded roll rates at the center of gravity, equations are used to calculate the local three-dimensional accelerations at hypothetical seating positions' Emergency Locking [seat belt] Retractors (ELR) during a steer induced rollover crash. For a threshold of 0.7 g, results demonstrated that intervals in the vehicle's response that may cause the ELR's inertial sensor to move into a neutral zone were limited to localized high magnitude negative vertical acceleration events during the rollover segment with a median duration of 4 ms, average duration of 4.8 ms and a maximum calculated duration of 31.7 ms. Changing the threshold to 0.35 g reduced the interval count by 70 percent and maximum duration by approximately 50 percent. Since a retractor in an interval when an inertial sensor may move into a neutral position will unlock only after belt retraction and at an acceleration ratio below its threshold, the duration that a retractor may be unlocked was probably less than the duration of an interval when a vehicle's response would allow an inertial sensor to move into a neutral zone.
Technical Paper
2014-04-01
Dietmar Otte, Birgitt Wiese
This study deals with the risk of injury to the bicyclist's head and the benefits of wearing a bicycle helmet in terms of reduction of injury severity or even injury avoidance. The accident data of 4,245 injured bicyclists as a randomized sample, collected by a scientific research team within the GIDAS project (German In-Depth Accident Study) were analyzed. Given that head injuries result in approximately 40% of bicycle-related crashes, helmet usage provides a sensible first-level approach for improving incidence and severity of head injuries. The effectiveness of the bicycle helmet was examined using descriptive and multivariate analysis for 433 bicyclists with a helmet and 3,812 bicyclists without a helmet. Skull fractures, severe brain injuries and skull base fractures were up to 80% less frequent for bicyclists wearing a helmet. Among individuals 40 years of age and older, a significant increase of severe head injuries occurred if no helmet was used compared to younger persons with helmet.
Technical Paper
2014-04-01
Richard R. Ruth, Jeremy Daily
Abstract 2013 and 2014 Ford Flex vehicles and airbag control modules with event data recorders (EDRs) were tested to determine the accuracy of speed and other data in the steady state condition, to evaluate time reporting delays under dynamic braking conditions, and to evaluate the accuracy of the stability control system data that the module records. This recorder is from the Autoliv RC6 family and this is the first known external research conducted on post 49CFR Part 563 Ford EDRs. The vehicle was instrumented with a VBox and a CAN data logger to compare external GPS based speeds to CAN data using the same synchronized time base. The vehicle was driven in steady state, hard braking, figure 8 and yaw conditions. The Airbag Control Module (ACM) was mounted onto a moving linear sled. The CAN bus data from driving was replayed as the sled created recordable events and the EDR data was compared to the reference instrumentation. The accuracy and timing of the data on a second stability control CAN bus was verified, and the transfer function between the CAN bus data and the EDR data was mapped, such that EDR data from any set of CAN data can be predicted.
Technical Paper
2014-04-01
Shotaro Odate, Naotoshi Takemura, William Seaman
Abstract Currently, a number of automobile OEMs have been equipped motorized seatbelt systems with volume-production vehicles. Since the current systems are generally initiated by the activation of the automatic collision brakes, or the brake assist systems; the benefit of those systems is limited solely in pre-crash phase. To enhance the effectiveness of the system, we attempted to develop a motorized seatbelt system which enables to control retracing force according to various situations during driving. The present system enables to accomplish both the occupants' comfort and protection performance throughout their driving from when it is buckled to when unbuckled and stored, or during both routine and sport driving, as well as pre-crash phase. Moreover, it was confirmed that lateral occupants' excursion during driving was reduced by up to 50% with the present system.
Technical Paper
2014-04-01
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Dong Gyun Kim, Cheol Pyo Hong
Abstract Vibration is both a source of discomfort and a possible risk to human health. There have been numerous studies and knowledge exists regarding the vibrational behavior of vehicle seats on adult human occupants. Children are more and more becoming regular passengers in the vehicle. However, very little knowledge available regarding the vibrational behavior of child safety seats for children. Therefore, the objective of this study was to measure the vibrations in three different baby car seats and to compare these to the vibrations at the interface between the driver and the automobile seat. The test was performed on the National road at the average speed of 70 km/h and acceleration levels were recorded for about 350 Sec (5.83 min). One male driver considered as an adult occupant and a dummy having a mass of 9 kg was representing one year old baby. Four accelerometers were used to measure the vibration. All measured accelerations were relative to the vertical direction. Vibration Analysis Toolset (VATS) was used for time domain analysis.
Collection
2014-04-01
This technical paper collection covers papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs.
Viewing 1 to 30 of 3208

Filter

  • Book
    18
  • Collection
    9
  • Magazine
    117
  • Technical Paper
    2542
  • Standard
    522
  • Article
    0
  • Article
    0