Display:

Results

Viewing 1 to 30 of 3426
2017-01-10
Technical Paper
2017-26-0349
Rushil Batra, Sahil Nanda, Shubham Singhal, Ranganath Singari
This study is an attempt to develop a decision support and control structure based on fuzzy logic for deployment of automotive airbags. Airbags, though an additional safety feature in vehicles, have proven to be fatal in various instances. Most of these casualties could have been avoided by using seat belts in the intended manner that is, as a primary restraint system. Fatalities can be prevented by induction of smart systems which can sense the presence and differentiate between passengers and conditions prevailing at a particular instant. Fuzzy based decision making has found widespread use due to its ability to accept non-binary or grey data and compute a reliable output. Smart airbags also allow the Airbag Control Unit to control inflation speed depending on instantaneous conditions.
CURRENT
2016-11-28
Standard
J2194_201611
Any ROPS meeting the performance requirement of ISO 5700 (Static ROPS Test Standard) or ISO 3463 (Dynamic ROPS Test Standard) meets the performance requirements of this SAE Standard if the ROPS temperature/material and seat belt requirements of this document are also met.
CURRENT
2016-11-23
Standard
J1194_201611
Fulfillment of the intended purpose requires testing as follows: A laboratory test, under repeatable and controlled loading, to permit analysis of the ROPS for compliance with the performance requirements of this SAE Standard. Either the static test (6.1) or the dynamic test (6.2) shall be conducted. A crush test to verify the effectiveness of the deformed ROPS in supporting the tractor in an upset attitude. A field upset test under reasonably controlled conditions, both to the rear and side, to verify the effectiveness of the protective system under actual dynamic conditions. (See 6.4.1.1 for requirements for the omission of this test). In addition to the laboratory and field loading requirements, there is a temperature-material requirement. (See 7.1.2.)
CURRENT
2016-11-01
Standard
J3026_201611
This SAE Recommended Practice describes the testing procedures that may be used to evaluate the integrity of ground ambulance-based occupant seating and occupant restraint systems for workers and civilians transported in the patient compartment of an ambulance when exposed to a frontal or side impact. This Recommended Practice was based on ambulance patient compartment dynamics and is not applicable to other vehicle applications or seating positions. This Recommended Practice is structured to accommodate seating systems installed in multiple attitudes including but not limited to side-facing, rear-facing, and forward-facing.
CURRENT
2016-11-01
Standard
J3027_201611
This SAE Recommended Practice describes the testing procedures required to evaluate the integrity of a ground ambulance-based patient litter, litter retention system, and patient restraint when exposed to a frontal, side or rear impact. Its purpose is to provide litter manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent ensures the patient litter, litter retention system, and patient restraint utilizes a similar dynamic performance test methodology to that which is applied to other vehicle seating and occupant restraint systems. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
2016-10-26
WIP Standard
AS1303B
This SAE Aerospace Standard (AS) applies to a portable chemical oxygen generator assembly intended for the following uses: a. First aid treatment of aircraft occupants after an emergency descent following a decompression or other emergency condition; and b. use by cabin attendants to maintain their mobility after a decompression.
CURRENT
2016-10-10
Standard
AMS3801/1C
This specification covers one weight and one weave of low-modulus meta-aramid cloth.
2016-10-03
WIP Standard
J167
This SAE Standard applies to an overhead cover installed on a protective frame or enclosure conforming to SAE J2194 or alternately SAE J1194 and the following additional requirement of a drop test to verify the effectiveness of the overhead cover in protecting the operator from falling objects. The test procedures and performance requirements outlined in this document are based on currently available engineering data.
2016-09-16
Journal Article
2016-01-9017
Janka Cafolla, Derick Smart, Barry Warner
Abstract The lifting and excavating industry are not as advanced as automotive in the use of modern CAE tools in the early stages of design and development of heavy machinery. There is still a lack of confidence in the integrity of the results from FE simulations and optimisation and this becomes a barrier to the adoption of virtual prototyping for vehicle verification. R&D of Tata Steel has performed tests on two forklift truck overhead guards supplied by a major manufacturer. Based on the international standard for Falling Object Protective Structures (FOPS) as an initial input to the method of testing, the main aim of this study was to generate as much test data as possible to correlate the Finite Element (FE) simulations of two tests - a static and a dynamic test. The static test was developed to deform the overhead guard plastically in a slow controlled manner, so it would be easier to correlate the measured data to FE simulation.
CURRENT
2016-08-23
Standard
J2956_201608
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
CURRENT
2016-08-17
Standard
J2917_201608
This SAE Recommended Practice describes the test procedures for conducting frontal impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
CURRENT
2016-08-17
Standard
J3044_201608
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
2016-08-16
Magazine
Types of aircraft passenger-escape systems An overview of existing and potential new methods for assuring aircraft occupant safety. SAE Skill India Initiative: S2I2 A new SAEINDIA collaboration aims to help young engineers acquire "industry-ready" skills. A technology-driven sustainable-agriculture solution Pumping more air into the cylinder is key to solving the CAFE puzzle, and engineers are hard at work figuring out the best ways to do it with turbocharger and supercharger innovation. Rotorcraft icing computational tool development 3D printing machines can't be built fast enough In the additive-manufacturing world, the costs of components are dropping, the technology is becoming more reliable and parts are fabricated faster, allowing industries beyond aerospace to adopt additive technologies, says Oak Ridge Lab's Ryan Dehoff.
CURRENT
2016-05-31
Standard
ARP4072A
This SAE Aerospace Recommended Practice (ARP) provides information and recommended guidelines for handling carry-on baggage prior to emergencies and during the emergency evacuation of transport category aircraft. Recommendations are provided on limiting the size, amount, and weight of carry-on baggage brought into the cabin, improved stowage of carry-on baggage to minimize hazards to passengers in flight and during emergency evacuations, and procedures to ensure carry-on baggage is not removed during an emergency evacuation.
2016-05-19
WIP Standard
AS1426C
This specification is intended to be used as a general standard for industry use for design and construction of air transport galley equipment and inflight food service systems.
CURRENT
2016-04-29
Standard
J2531_201604
New methods are available to assist in evaluating the risk of impulse noise-induced hearing loss from inflatable devices, for example, airbags and seat belt pretensioners. This document presents some background on impulse noise measurement techniques and assessment criteria. Related information relative to test details, for example, preamplifier specifications and filtering methods and criteria, will be discussed in a future recommended practice.
CURRENT
2016-04-28
Standard
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
2016-04-21
WIP Standard
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
2016-04-05
Technical Paper
2016-01-1525
Anil Kalra, Kartik Somasundram, Ming Shen, Vishal Gupta, Clifford C. Chou, Feng Zhu
Abstract Numerical models of Hybrid III had been widely used to study the effect of underbody blast loading on lower extremities. These models had been primarily validated for automotive loading conditions of shorter magnitude in longer time span which are different than typical blast loading conditions of higher magnitude of shorter duration. Therefore, additional strain rate dependent material models were used to validate lower extremity of LSTC Hybrid III model for such loading conditions. Current study focuses on analyzing the mitigating effect of combat boots in injury responses with the help of validated LSTC Hybrid III model. Numerical simulations were run for various impactor speeds using validated LSTC Hybrid III model without any boot (bare foot) and with combat boot.
2016-04-05
Technical Paper
2016-01-1534
Rudolf Reichert, Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan, Daniel Brown
Abstract A detailed finite element model of a 2012 Toyota Camry was developed by reverse engineering. The model consists of 2.25M elements representing the geometry, thicknesses, material characteristics, and connections of relevant structural, suspension, and interior components of the mid-size sedan. This paper describes the level of detail of the simulation model, the validation process, and how it performs in various crash configurations, when compared to full scale test results. Under contract with the National Highway Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA), the Center for Collision Safety and Analysis (CCSA) team at the George Mason University has developed a fleet of vehicle models which has been made publicly available. The updated model presented is the latest finite element vehicle model with a high level of detail using state of the art modeling techniques.
2016-04-05
Technical Paper
2016-01-1539
Do Hoi KIm
Abstract Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1511
Jan Vychytil, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this work we present the VIRTHUMAN model as a tool for injury risk assessment in pedestrian crash scenarios. It is a virtual human body model formed of a multibody structure and deformable segments to account for the mechanical response of soft tissues. Extensive validation has been performed to ensure its biofidelity. Due to the scaling algorithm implemented, variations in the human population in terms of height, weight, gender and age can be considered. Assessment of the injury risk is done via automatic evaluation software developed. Injury criteria for individual body parts are evaluated using accelerations, forces and displacements of certain points. Injury risk is indicated by the colour of particular body parts in accordance with NCAP rating. A real accident is investigated in this work. A 60-year-old female was hit laterally by a passenger vehicle with the impact velocity of 40 km/h. The accident is reconstructed using VIRTHUMAN as pedestrian representative.
2016-04-05
Technical Paper
2016-01-0402
Eric S. Elliott, Christopher Roche, Jashwanth Reddy
Since the inception of the IIHS Small Overlap Impact (SOI) test in 2012, automotive manufacturers have implemented many solutions in the vehicle body structure to achieve an IIHS “Good” rating. There are two main areas of the vehicle: forward of vehicle cockpit and immediately surrounding the vehicle cockpit, which typically work together for SOI to mitigate crash energy and prevent intrusion into the passenger zones. The structures forward of vehicle cockpit are designed to either 1) absorb vehicle energy from impact to the barrier, or 2) provide enough strength and rigidity to aid deflection of the vehicle away from the barrier. The structures which are immediately surrounding the vehicle cockpit (known as pillars and rocker/sills) are traditionally components designed to be highly rigid sheet metal panels to protect the occupant during crash events.
2016-04-05
Technical Paper
2016-01-1612
Francesco Mariani, Francesco Risi, Nicola Bartolini, Francesco Castellani, Lorenzo Scappaticci
Abstract Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
2016-04-05
Technical Paper
2016-01-1521
Masaaki Kuwahara, Tsuyoshi Yasuki, Takeki Tanoue, Ryosuke Chikazawa
Abstract This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-1528
Peijun Ji, Qing Zhou
Abstract As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
2016-04-05
Technical Paper
2016-01-1529
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou, Malhar Kumar
Abstract Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
2016-04-05
Technical Paper
2016-01-0396
Prasad S. Mehta, Jennifer Solis Ocampo, Andres Tovar, Prathamesh Chaudhari
Abstract Biologically inspired designs have become evident and proved to be innovative and efficacious throughout the history. This paper introduces a bio-inspired design of protective structures that is lightweight and provides outstanding crashworthiness indicators. In the proposed approach, the protective function of the vehicle structure is matched to the protective capabilities of natural structures such as the fruit peel (e.g., pomelo), abdominal armors (e.g., mantis shrimp), bones (e.g., ribcage and woodpecker skull), as well as other natural protective structures with analogous protective functions include skin and cartilage as well as hooves, antlers, and horns, which are tough, resilient, lightweight, and functionally adapted to withstand repetitive high-energy impact loads. This paper illustrates a methodology to integrate designs inspired by nature, Topology optimization, and conventional modeling tools.
Viewing 1 to 30 of 3426

Filter