Display:

Results

Viewing 1 to 30 of 3325
2016-09-16
Journal Article
2016-01-9017
Janka Cafolla, Derick Smart, Barry Warner
Abstract The lifting and excavating industry are not as advanced as automotive in the use of modern CAE tools in the early stages of design and development of heavy machinery. There is still a lack of confidence in the integrity of the results from FE simulations and optimisation and this becomes a barrier to the adoption of virtual prototyping for vehicle verification. R&D of Tata Steel has performed tests on two forklift truck overhead guards supplied by a major manufacturer. Based on the international standard for Falling Object Protective Structures (FOPS) as an initial input to the method of testing, the main aim of this study was to generate as much test data as possible to correlate the Finite Element (FE) simulations of two tests - a static and a dynamic test. The static test was developed to deform the overhead guard plastically in a slow controlled manner, so it would be easier to correlate the measured data to FE simulation.
CURRENT
2016-08-23
Standard
J2956_201608
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
CURRENT
2016-08-17
Standard
J3044_201608
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
CURRENT
2016-08-17
Standard
J2917_201608
This SAE Recommended Practice describes the test procedures for conducting frontal impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
2016-08-16
Magazine
Types of aircraft passenger-escape systems An overview of existing and potential new methods for assuring aircraft occupant safety. SAE Skill India Initiative: S2I2 A new SAEINDIA collaboration aims to help young engineers acquire "industry-ready" skills. A technology-driven sustainable-agriculture solution Pumping more air into the cylinder is key to solving the CAFE puzzle, and engineers are hard at work figuring out the best ways to do it with turbocharger and supercharger innovation. Rotorcraft icing computational tool development 3D printing machines can't be built fast enough In the additive-manufacturing world, the costs of components are dropping, the technology is becoming more reliable and parts are fabricated faster, allowing industries beyond aerospace to adopt additive technologies, says Oak Ridge Lab's Ryan Dehoff.
CURRENT
2016-05-31
Standard
ARP4072A
This SAE Aerospace Recommended Practice (ARP) provides information and recommended guidelines for handling carry-on baggage prior to emergencies and during the emergency evacuation of transport category aircraft. Recommendations are provided on limiting the size, amount, and weight of carry-on baggage brought into the cabin, improved stowage of carry-on baggage to minimize hazards to passengers in flight and during emergency evacuations, and procedures to ensure carry-on baggage is not removed during an emergency evacuation.
2016-05-19
WIP Standard
AS1426C
This specification is intended to be used as a general standard for industry use for design and construction of air transport galley equipment and inflight food service systems.
CURRENT
2016-04-29
Standard
J2531_201604
New methods are available to assist in evaluating the risk of impulse noise-induced hearing loss from inflatable devices, for example, airbags and seat belt pretensioners. This document presents some background on impulse noise measurement techniques and assessment criteria. Related information relative to test details, for example, preamplifier specifications and filtering methods and criteria, will be discussed in a future recommended practice.
CURRENT
2016-04-28
Standard
J2937_201604
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass.
2016-04-21
WIP Standard
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
2016-04-05
Technical Paper
2016-01-1529
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou, Malhar Kumar
Abstract Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
2016-04-05
Technical Paper
2016-01-1525
Anil Kalra, Kartik Somasundram, Ming Shen, Vishal Gupta, Clifford C. Chou, Feng Zhu
Abstract Numerical models of Hybrid III had been widely used to study the effect of underbody blast loading on lower extremities. These models had been primarily validated for automotive loading conditions of shorter magnitude in longer time span which are different than typical blast loading conditions of higher magnitude of shorter duration. Therefore, additional strain rate dependent material models were used to validate lower extremity of LSTC Hybrid III model for such loading conditions. Current study focuses on analyzing the mitigating effect of combat boots in injury responses with the help of validated LSTC Hybrid III model. Numerical simulations were run for various impactor speeds using validated LSTC Hybrid III model without any boot (bare foot) and with combat boot.
2016-04-05
Technical Paper
2016-01-1612
Francesco Mariani, Francesco Risi, Nicola Bartolini, Francesco Castellani, Lorenzo Scappaticci
Abstract Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
2016-04-05
Technical Paper
2016-01-1534
Rudolf Reichert, Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan, Daniel Brown
Abstract A detailed finite element model of a 2012 Toyota Camry was developed by reverse engineering. The model consists of 2.25M elements representing the geometry, thicknesses, material characteristics, and connections of relevant structural, suspension, and interior components of the mid-size sedan. This paper describes the level of detail of the simulation model, the validation process, and how it performs in various crash configurations, when compared to full scale test results. Under contract with the National Highway Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA), the Center for Collision Safety and Analysis (CCSA) team at the George Mason University has developed a fleet of vehicle models which has been made publicly available. The updated model presented is the latest finite element vehicle model with a high level of detail using state of the art modeling techniques.
2016-04-05
Technical Paper
2016-01-1530
Yury Chudnovsky, Justin Stocks-Smith, Jeya Padmanaban, Joe Marsh
Abstract NASS/CDS data (1993-2013) was used to examine serious injury rates and injury sources for belted drivers in near- and far-side impacts. Frequency and severity of near- and far-side impacts by crash severity (delta-V) were compared for older (1994-2007 MY) and newer (2008-2013 MY) vehicles. For 2008-2013 MY, individual cases were examined for serious thorax injury in far-side impacts. Results show that, for newer passenger cars, about 92% of side impacts have a delta-V under 15 mph and, for older cars, the percentage is about 86%. The rate of serious injury is higher for nearside compared to far-side crashes for both older and newer models, and the near-side injury rate is much lower for newer models. Safety features, including side airbags, are effective in reducing injuries to near-side belted drivers in newer models. The serious injury rate for near-side belted drivers in older cars is 5.5% for near-side crashes and 1.2% for far-side crashes.
2016-04-05
Technical Paper
2016-01-1539
Do Hoi KIm
Abstract Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
2016-04-05
Technical Paper
2016-01-1541
Zuolong Wei, Hamid Reza Karimi, Kjell Gunnar Robbersmyr
Abstract The analysis of the vehicle crash performance is of great meaning in the vehicle design process. Due to the complexity of vehicle structures and uncertainty of crashes, the analysis of vehicle crashworthiness is generally depending on the researchers' experiences. In this paper, different deformation modes of energy absorption components are studied. More specifically, the bumper, crash box, the front longitudinal beam and the engine/firewall have different frequency characteristics in the deformation process. According to these characteristics, it is possible to identify the performance of each component in the crash process of assembled structures. To achieve this goal, the crash response of the passenger cabin is decomposed by the time-frequency transformation. Different frequency components exist mainly in a specified period of the crash process.
2016-04-05
Technical Paper
2016-01-1481
Gary A. Davis, Abhisek Mudgal
Abstract A continuing topic of interest is how to best use information from Event Data Recorders (EDR) to reconstruct crashes. If one has a model which can predict EDR data from values of the target variables of interest, such as vehicle speeds at impact, then in principle one can invert this model to estimate the target values from EDR measurements. In practice though this can require solving a system of nonlinear equations and a reasonably flexible method for carrying this out involves replacing the inverse problem with nonlinear least-squares (NLS) minimization. NLS has been successfully applied to two-vehicle planar impact crashes in order to estimate impact speeds from different combinations of EDR, crush, and exit angle measurements, but an open question is how to assess the uncertainty associated with these estimates. This paper describes how Markov Chain Monte Carlo (MCMC) simulation can be used to quantify uncertainty in planar impact crashes.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1512
Jeya Padmanaban, Roger Burnett, Andrew Levitt
Abstract This paper updates the findings of prior research addressing the relationship between seatback strength and likelihood of serious injury/fatality to belted drivers and rear seat occupants in rear-impact crashes. Statistical analyses were performed using 1995-2014 CY police-reported crash data from seventeen states. Seatback strength for over 100 vehicle model groupings (model years 1996-2013) was included in the analysis. Seatback strength is measured in terms of the maximum moment that results in 10 inches of seat displacement. These measurements range from 5,989 in-lbs to 39,918 in-lbs, resulting in a wide range of seatback strengths. Additional analysis was done to see whether Seat Integrated Restraint Systems (SIRS) perform better than conventional belts in reducing driver and rear seat occupant injury in rear impacts. Field data shows the severe injury rate for belted drivers in rear-impact crashes is less than 1%.
2016-04-05
Technical Paper
2016-01-1511
Jan Vychytil, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this work we present the VIRTHUMAN model as a tool for injury risk assessment in pedestrian crash scenarios. It is a virtual human body model formed of a multibody structure and deformable segments to account for the mechanical response of soft tissues. Extensive validation has been performed to ensure its biofidelity. Due to the scaling algorithm implemented, variations in the human population in terms of height, weight, gender and age can be considered. Assessment of the injury risk is done via automatic evaluation software developed. Injury criteria for individual body parts are evaluated using accelerations, forces and displacements of certain points. Injury risk is indicated by the colour of particular body parts in accordance with NCAP rating. A real accident is investigated in this work. A 60-year-old female was hit laterally by a passenger vehicle with the impact velocity of 40 km/h. The accident is reconstructed using VIRTHUMAN as pedestrian representative.
2016-04-05
Technical Paper
2016-01-1504
Monica Lynn Haumann Jones, Sheila Ebert-Hamilton, Matthew Reed
Abstract Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
2016-04-05
Technical Paper
2016-01-1498
Hironori Wakana, Masuyoshi Yamada, Minoru Sakairi
Abstract The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
2016-04-05
Technical Paper
2016-01-1351
Simhachalam Bade
Abstract Aluminum alloys are widely used in the transportation because of their high strength-to-weight ratio and outstanding capability in absorbing energy. In this paper, performance of bumper with crash tubes using aluminum alloy AA7003 materials is compared with that of AA6061 and high strength steel (DP800) using numerical methods. Quasi-static test is simulated using the LS-DYNA implicit finite element program. Bumper and crash tubes are included in the finite element model. Symmetric Holes are provided in the crash tubes to initiate crushing. The energy absorbed by bumper and crash tubes are compared. Dynamic simulation is done using LS-Dyna explicit program. True stress-true plastic strain curves at different strain rates from the literature is used in the dynamic simulation of AA7003 material to study the strain rate effects on impact behavior of tubes. The impact mass is represented by RigidWall Planar Moving Force option in LSDYNA.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-1489
Logan Miller, James Gaewsky, Ashley Weaver, Joel Stitzel, Nicholas White
Abstract Crash reconstructions using finite element (FE) vehicle and human body models (HBMs) allow researchers to investigate injury mechanisms, predict injury risk, and evaluate the effectiveness of injury mitigation systems, ultimately leading to a reduced risk of fatal and severe injury in motor vehicle crashes (MVCs). To predict injuries, regional-level injury metrics were implemented into the Total Human Model for Safety (THUMS) full body HBM. THUMS was virtually instrumented with cross-sectional planes to measure forces and moments in the femurs, upper and lower tibias, ankles, pelvis (pubic symphysis, ilium, ischium, sacrum, ischial tuberosity, and inferior and superior pubic ramus), and the cervical, thoracic, and lumbar vertebrae and intervertebral discs. To measure accelerations, virtual accelerometers were implemented in the head, thoracic vertebrae, sternum, ribs, and pelvis.
2016-04-05
Technical Paper
2016-01-1487
Zhenhai Gao, Chuzhao Li, Hongyu Hu, Chaoyang Chen, Hui Zhao, Helen Yu
Abstract At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
2016-04-05
Technical Paper
2016-01-1490
Hans W. Hauschild, Frank Pintar, Dale Halloway, Mark Meyer, Rodney Rudd
Abstract Oblique crashes to the vehicle front corner may not be characteristic of either frontal or side impacts. This research evaluated occupant response in oblique crashes for a driver, rear adult passenger, and a rear child passenger. Occupant responses and injury potential were evaluated for seating positions as either a far-or near-side occupant. Two crash tests were conducted with a subcompact car. The vehicle’s longitudinal axis was oriented 45 degrees to the direction of travel on a moving platform and pulled into a wall at 56 km/h. Dummies utilized for the seating positions were an adult dummy (50th-percentile-HIII and THOR-Alpha) for the front-left (driver) position, 5th-percentile-female-HIII for the right-rear position, and a 3-year-old HIII for the left-rear position.
2016-04-05
Technical Paper
2016-01-1503
Shotaro Odate, Yukinori Midorikawa, Yuki Yamazaki
Abstract Motorized seatbelt systems that retract seatbelts using motors are being mass-produced by many manufacturers. Scenarios for operation of these systems cover a wide range, including automatic braking for collision avoidance, brake assist and other such pre-crash situations, when the seatbelt is buckled, unbuckled and stored, during sport driving, or under normal conditions. These systems increase the retracting load of the motor using gears, and they can apply a high load in retracting the seatbelt. Previous systems, however, were designed primarily for pre-crash conditions. In previous systems, motor speed rose to higher levels in the normal operating state. The tendency to generate more noise and the application of higher loads on seatbelt retraction therefore became issues. For the present study, these issues were addressed using simulation to optimize the gear ratio.
2016-04-05
Technical Paper
2016-01-1505
William W. Van Arsdell, Paul Weber, Charles Stankewich, Brian Larson, Ryan Hoover, Richard Watson
Abstract This paper investigates the role that load-limiters play with respect to the performance of occupant protection systems, with focus on performance in frontal crashes. Modern occupant protection systems consist of not just the seat belt, but also airbags, interior vehicle surfaces and vehicle structure. Modern seat belts very often incorporate load-limiters as well as pretensioners. Published research has established that load-limiters and pretensioners increase the effectiveness of occupant protection systems. Some have argued that load-limiters with higher deployment thresholds are always better than load-limiters with lower deployment thresholds. Through testing, modeling and analysis, we have investigated this hypothesis, and in this paper we present test and modeling data as well as a discussion to this data and engineering mechanics to explain why this hypothesis is incorrect.
Viewing 1 to 30 of 3325

Filter