Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 60
2017-09-21
WIP Standard
AIR8012
The purpose of the document is to provide the guidelines of the technological approach for developing a PHM system for EMAs with particular reference to their possible use as primary flight control actuators. It provides a basic description of the physics of the most common degradation processes,a reliability assessment and a discussion on the signals, with the associated data processing, required to build up an effective health monitoring system.
CURRENT
2017-07-19
Standard
AIR4174A
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d.
CURRENT
2017-03-17
Standard
J3083_201703
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field.
2017-01-24
WIP Standard
AIR7999
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of diagnostic and prognostic algorithms applied to Engine Health Management (EHM) functions. This document consolidates and expands upon the metric information previously contained in AIR4985 and AIR5909. The emphasis is entirely on metrics and as such is intended to provide an extension and complement to such documents as ARP4176, which provides insight into how to create a cost benefit analysis to determine the justification for implementing an EHM system.
CURRENT
2017-01-04
Standard
AIR1839D
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
2016-12-21
WIP Standard
ARP6915
This Aerospace Recommended Practice (ARP) offers best practice regarding the implementation of IVHM systems taking into account Human Factors, both the vehicle crew and the maintenance staff. The document will include considerations regarding both military and civil fixed wing aircraft. Safety implications will also be addressed.
CURRENT
2016-12-13
Standard
AIR6212
This document collates the ways and means that existing sensors can identify the platform’s exposure to volcanic ash. The capabilities include real-time detection and estimation, and post flight determinations of exposure and intensity. The document includes results of initiatives with the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA), the International Civil Aviation Organization (ICAO), Transport Canada, various research organizations, Industry and other subject matter experts. The document illustrates the ways that an aircraft can use existing sensors to act as health monitoring tools so as to assess the operational and maintenance effects related to volcanic ash incidents and possibly help determine what remedial action to take after encountering a volcanic ash (VA) event.
CURRENT
2016-11-29
Standard
AIR1873A
This Aerospace Information Report (AIR) describes a Limited Engine Monitoring System that can be used by the flight crew or the maintenance staff, or both, to monitor the health of gas turbine engines in aircraft. This AIR considers monitoring of gas path performance and mechanical parameters, and systems such as low cycle fatigue counters and engine history recorders. It also considers typical measurement system accuracies and their impact. This AIR is intended as a technical guide. It is not intended to be used as a legal document or standard. AIR 1873 supplements ARP 1587, Aircraft Gas Turbine Engine Monitoring System Guide.
CURRENT
2016-07-19
Standard
ARD6888
The purpose of this document is to specify the functional requirements for a miniature connector to be used for health monitoring purposes on aircraft (including harsh environments such as found in propulsion systems). It is actually a family of miniature connectors that is specified in this document for various uses (e.g., pin counts) and environments. This specification will be used by the SAE committee for connectors (AE-8C1) to study the feasibility of developing a dedicated connector standard.
2016-05-17
WIP Standard
AIR6245
This document is applicable to military aircraft where stakeholders are seeking guidance on the development and approval of Structural Health Monitoring (SHM) technologies and on the integration of these technologies into encompassing maintenance and operational support systems. The document will refer to those guidelines prepared under SAE ARP6461 that are relevant and applicable to military applications.
2016-05-17
WIP Standard
JA6268
This Aerospace Recommended Practice (ARP) was created to help industry deal with existing barriers to the successful implementation of Integrated Vehicle Health Management (IVHM) technology in the aerospace and automotive sectors. That is,given the common barriers that exist, this ARP can be applied not only to aerospace but also to the automotive, commercial and military vehicle sectors. Original Equipment Manufacturers (OEMs) in all of these sectors are heavily dependant upon a large number of component suppliers in order to design and build their products. The advent of IVHM technology has accentuated the need for improved coordination and communication between the OEM and its suppliers –to ensure that suppliers design health ready capabilities into their particular components.
2016-04-22
WIP Standard
ARP6904
In order to realize the benefits of Integrated Vehicle Health Management (IVHM) within the aerospace and defense industry there is a need to address five critical elements of data interoperability within and across the aircraft maintenance ecosystem, namely • Approach • Trust • Context • Value • Security In Integrated Vehicle Health Management (IVHM) data interoperability is the ability of different authorized components, systems, IT, software, applications and organizations to securely communicate, exchange data, interpret data, use the information and derive consistent insight from the data that has been exchanged to derive value.
CURRENT
2016-02-26
Standard
AIR5909
This SAE Aerospace Information Report (AIR) presents metrics for assessing the performance of prognostic algorithms applied for Engine Health Management (EHM) functions. The emphasis is entirely on prognostics and as such is intended to provide an extension and complement to such documents as AIR5871, which offers information and guidance on general prognostic approaches relevant to gas turbines, and AIR4985 which offers general metrics for evaluating diagnostic systems and their impact on engine health management activities.
2016-01-03
WIP Standard
AIR6900
This AIR will address the need for a strategy to achieve aircraft operating certificate holder maintenance efficiencies within the existing regulatory environment as well as the need for regulation, policy, and guidance changes in the long-term to accommodate more complex IVHM solutions. This document will analyse which IVHM solutions can be incorporated within existing maintenance procedures and which also comply with regulations, policy, and guidance. One of the AIR’s objectives is to define best practices for aircraft operating certificate holders to engage with regulators to get approval for simpler IVHM applications leading to maintenance efficiencies. Additionally, this document will analyse the barriers that existing regulations, policy, and guidance present to the implementation of more advanced IVHM solutions. The result is a set of recommendations to certify and implement end-to-end IVHM solutions for the purpose of gaining maintenance efficiencies.
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
2014-11-05
WIP Standard
ARP6887
The ARP shall cover the objectives and activities of Verification & Vallidation Processes required to assure high quality and/or criticality level of an IVHM Systems and Software.
2014-09-30
WIP Standard
AIR6334
This SAE Aerospace Information Report (AIR) examines the need for and the application of a power train usage metric that can be used to more accurately determine the TBO for helicopter transmissions. It provides a formula for the translation of the recorded torque history into mechanical usage. It provides examples of this process and recommends a way forward. This document of the SAE HM-1 IVHM Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
CURRENT
2014-07-07
Standard
ARP6275
This ARP provides insights on how to perform a cost benefit analysis (CBA) to determine the return on investment that would result from implementing an integrated Health Management (HM) system on an air vehicle. The word “integrated” refers to the combination or “roll up” of sub-systems health management tools to create a platform centric system. The document describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with HM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a HM system could provide.
2013-12-19
WIP Standard
ARP6290
This SAE Aerospace Recommended Practice (ARP) provides best practices and guidance for creating an architecture for integrated vehicle health management systems. Where possible, this document will also provide references to tools to conduct architectural trades. Finally, this document will provide use cases to expose considerations and stakeholders to be included in these trades and utilization of an IVHM system (which may lead to new functional or non-functional requirements).
CURRENT
2013-09-19
Standard
ARP6461
This document is applicable to civil aerospace airframe structural applications where stakeholders are seeking guidance on the definition, development and certification of Structural Health Monitoring (SHM) technologies for aircraft health management applications. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future.
CURRENT
2013-05-16
Standard
JA6097_201305
SAE JA6097 (“Using a System Reliability Model to Optimize Maintenance”) shows how to determine which maintenance to perform on a system when that system requires corrective maintenance to achieve the lowest long-term operating cost. While this document may focus on applications to Jet Engines and Aircraft, this methodology could be applied to nearly any type of system. However, it would be most effective for systems that are tightly integrated, where a failure in any part of the system causes the entire system to go off-line, and the process of accessing a failed component can require additional maintenance on other unrelated components.
2013-04-26
WIP Standard
JA1009-1
This document describes reliability testing that is performed to support aerospace applications.
CURRENT
2013-02-05
Standard
ARP4176
This ARP provides an insight into how to approach a cost benefit analysis (CBA) to determine the return on investment (ROI) that would result from implementing a propulsion Prognostics and Health Management (PHM) system on an air vehicle. It describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with PHM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a PHM system could provide.
2012-09-25
WIP Standard
ARP6407
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the design of Integrated Vehicle Health Management (IVHM) systems. This guidance is technology-independent; the principles are therefore generally applicable to the majority of potential IVHM design scenarios, including “clean sheet” system design, where IVHM is considered as a primary design consideration and the retrofit of existing systems with IVHM capability, where the design process leverages and supports existing system elements. In either case, the document will provide guidance on the design considerations for an IVHM system throughout the analysis, concept development, and synthesis stages of the IVHM Design process and provide discussion for the users’ consideration on the trades, metrics, and lifecycle impacts of IVHM design decisions.
CURRENT
2012-05-31
Standard
AS8054A
This SAE Aerospace Standard (AS) provides guidelines for the functional, performance, qualification and acceptance testing, and documentation requirements for the components of an airborne engine vibration monitoring (EVM) system which is intended for use as a turbojet engine rotor unbalance indicating system, per FAR 25.1305 (D)(3) on transport category airplanes.
2012-01-17
WIP Standard
ARP6883
A rough outline of the document is as follows: 1. Introduction to IVHM and rationale for the document 2. Identification of different (internal and external) stakeholders. Customers, maintenance personnel, sales and marketing and finance. Systems designers, RM&S experts, etc. Need to link requirements to design rationale, including a cost-benefit-analysis. 3. Requirements breakdown structures, from high level system requirements to lower level sub-system requirements, and finally down to component specifications. 4. Links to other systems engineering processes such as V&V, architecture design, program milestones, etc. 5. Examples of good and bad requirement practices. Maybe individual case studies or an example of an entire system. 6. Conclusions.
CURRENT
2011-12-01
Standard
AIR4276A
This Aerospace Information Report (AIR) is the primary vehicle for providing the survey results to industry and government. The Institute of Defense Analysis (IDA), has performed a study which concludes that computerized techniques must be developed to integrate RM&S into product design in order to permit design influence from inception throughout the product life cycle. This AIR addresses the DoD initiative for developing Computer Aided Acquisition and Logistic Support (CALS) and industry's role in its evolution. AIR 4276 provides the detailed results of an industry/government survey inquiring into the extent of computerization of RM&S into the design process. Background information describes the evolution of the survey and why it was developed.
2011-09-15
WIP Standard
ARP6204
The scope of this document is to clearly lay out the path for an organization to implement a CBM approach to maintenance. The practices will include both CBM in design and in the support phase for fielded equipment.
CURRENT
2009-10-28
Standard
AIR4986A
Turbine engine malfunctions account for a substantial portion of the maintenance actions required to keep both fixed and rotary wing aircraft operational. Undetected incipient component failures can result in secondary engine damage and expensive unscheduled maintenance actions. Recent developments of electrostatic methods now provide the potential for the detection of foreign object ingestion and early detection of distress in gas path components. This SAE Aerospace Information Report (AIR) seeks to outline the history of the electrostatic technique and provides examples of state-of-the-art systems for both inlet and exhaust gas debris monitoring systems along with examples of most recent testing.
CURRENT
2008-06-09
Standard
AIR5871
This document applies to prognostics of gas turbine engines and its related auxiliary and subsystems. Its purpose is to define the meaning of prognostics with regard to gas turbine engines and related subsystems, explain its potential and limitations, and to provide guidelines for potential approaches for use in existing condition monitoring environments. It also includes some examples.
Viewing 1 to 30 of 60

Filter

  • Standard
    60