Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2599
2017-06-05
Technical Paper
2017-01-1869
Glenn Pietila, Gang Yin, Branton Dennis IV
During the development of an automotive acoustic package valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include sound intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
The automotive industry continues to develop new technologies aimed at reducing overall vehi-cle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of tech-nologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital to-wards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is impera-tive that these NVH challenges be understood and solved.
2017-06-05
Technical Paper
2017-01-1753
Jack Hall Riddle, Ya-Juan Bemman, Tom Frei, Sihui Wu, Ishang Padalkar
Demands for low-RPM operation are increasing in the automotive market. This requirement is largely driven by consumer and regulatory demand for vehicles which are more efficient in the use of fuel. As a result, modern engine and transmission technologies have been developed which permit engine operation at increasingly low RPM’s. The resulting low frequency exhaust noise is more difficult to attenuate than in vehicles in years past. At the same time, vehicles often have less packaging space for mufflers, when larger volume would otherwise be needed to attenuate the lower frequency firing order content. A further challenge is the demand for increasingly refined performance sounds from the exhaust systems of premium cars despite the technical obstacles involved in even maintaining sound quality. Finally, legally permissible sound levels are decreasing in some markets. These market and regulatory demands require new solutions.
2017-03-28
Technical Paper
2017-01-1109
Keisuke Ota, Masami Kondo, Shuntaro Shinohara, Norihiro Tsukamoto, Seiji Masunaga, Ayumu Sagawa
Abstract To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Technical Paper
2017-01-1291
Ashraya Gupta, Harshil Kathpalia, Harshit Aggarwal, Naveen Kumar
Abstract The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
2017-03-28
Technical Paper
2017-01-1383
Satheesh Kumar Chandran, James Forbes, Carrie Bittick, Kathleen Allanson, Fnu Brinda
Abstract There is a strong business case for automotive interfaces to undergo usability testing throughout their product development lifecycle. System Usability Scale (SUS) is a simple and standard measure of usability. To meet the timing needs for product development, usability testing needs to be performed in a quick, cost effective manner. Hence the required sample size of participants for a usability study is one of the critical factors. To determine an acceptable sample size, a Monte Carlo simulation using SUS scores from eleven different in-vehicle automotive interface usability studies was used to create 500,000 subsamples of different sample sizes. The percentage of subsamples with mean scores within the confidence interval of the population mean was calculated. At a subsample size of thirty-five, 95% of the subsamples have a mean SUS score within the 95% confidence interval of the population mean.
2017-03-28
Technical Paper
2017-01-1602
Garett Scott Patria, James A. Mynderse
Abstract There is evidence to suggest that before military equipment ever experiences sustainment delays the equipment carries state patterns within its logistics and supply chain data history that could be leveraged for risk mitigation. Analysis of these patterns can also identify new research & development (R&D) and technology transition candidates that relate the seemingly disparate activities of R&D project management and Diminishing Manufacturing Sources and Material Shortages (DMSMS) management. Relating eligible R&D activities to the DMSMS risk identification phase helps stage potential sustainment risk mitigations ahead of time on the one hand, while creating additional demand and resources to mature prototypes on the other hand.
2017-03-28
Technical Paper
2017-01-1600
James Mansour, Badih Jawad, Liping Liu, Vernon Fernandez, Sabah Abro, Jeff Tibbenham
Abstract A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
2017-03-28
Technical Paper
2017-01-1604
Christina Michael, Badih Jawad, Liping Liu, Vernon Fernandez, Sabah Abro, Craig Zinser, Dave Guidos
Abstract The objective of this research is to develop a component based enhanced production process after End of Line (EOL) testing. This process will add more quality validation evaluations, but will not require any disassembling of the parts or damage to them. It will help the suppliers to avoid scrap and rework parts as well as General Motors (GM) to reduce warranty and recalls. An Enhanced Production Process was implemented in March, 2016 at a supplier in Mexico. The Enhanced Audit Station implementation is to ensure that the supplier is satisfying the Production Part Approval Process (PPAP) requirements. The most important four components are: Touch Appearance Lighting and Color (TALC), Appearance Approval Report (AAR), Dimensional Checks, and Function Testing. Through statistics, a pilot study was conducted to correlate the selected variables to reduce warranty.
2017-03-28
Technical Paper
2017-01-1610
Mike Kheirallah, Badih Jawad, Liping Liu
Abstract Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
2017-03-28
Technical Paper
2017-01-1607
Munther Hermez, Badih Jawad, Liping Liu, Eli Oklejas
Abstract This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
2017-03-28
Technical Paper
2017-01-1609
Saleh Morjan, Badih Jawad, Liping Liu
Abstract In this experimental work, a flow field test system embedded with different vortex generators was installed to investigate the impact of vortex generation on heat transfer of air flow in a horizontal channel, and the flow structure was evaluated using a particle image velocimetry (PIV) system. Three different configurations of vortex generators were fitted vertically on a flat plate, at attack angles of 15o, 30o, and 45o, and tested at four different incoming air velocities. An axial fan was used to supply the flow of air through the test section. The effects of Reynolds number, attack angle, and the shape of vortex generators were examined in this work. The experimental results showed that, the presence of vortex generators had considerable effect on temperature distribution, pressure drop, and heat transfer augmentation in the channel flow.
2017-03-28
Technical Paper
2017-01-1611
Elankathiravan Mathivanan, David Gasior, Liping Liu, Kingman Yee, Yawen Li
Abstract In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-0064
Agish George, Jody Nelson
Abstract The ISO 26262 standard for functional safety was first released in 2011 and has been widely incorporated by most OEMs and Tier1 suppliers. The design and conformance of the product to functional safety standards is strongly intertwined with the product development cycle and needs to be carefully managed. The consideration for functional safety needs to begin right from the product’s concept phase through engineering and production and finally decommissioning. The application of the standard in a project can bring significant challenges especially to managers who are relatively new to the standard. This paper provides some guidelines on the key tasks involved in managing ISO26262 in projects and some ways to approach them. The paper is expected to help managers manage ISO26262 compliant projects. The paper also tries to come up with a metric that can be used for resource estimation for implementing ISO26262 in projects.
2017-03-28
Technical Paper
2017-01-0348
Mani Shankar, I V N Sri Harsha, K V Sunil, Ramsai Ramachandran
Abstract In an automobile, road loads due to tire-road interaction are transferred to vehicle body through suspension. This makes suspension a critical component from the body durability perspective. During vehicle design and development, optimization of suspension parameters to suit ride and handling performance is a continuous and iterative process. These changes on suspension can affect vehicle body durability performance. This paper tries to establish a process to evaluate the effect of changes in suspension parameters on body durability, thus helping in understanding the impact of these changes. The process starts with virtual model building in Multi Body Dynamics software. The base line model is correlated with testing using fatigue at some critical locations on Body in White (BIW).
2017-03-28
Technical Paper
2017-01-0201
Tejas Janardan Sarang, Amar Phatak, Jay Bendkhale
Abstract In the recent years, the timeline of releasing a new vehicle has decreased drastically due to rapidly changing trends in the automotive industry. Therefore, it is very important to constantly optimize the development phases, starting from concept initiation to the final testing of production ready vehicle. The real world tests conducted on vehicles take huge amount of time, since these tests are carried out for large kilometers to periodically analyze tire wear, clutch wear and brake failure. Collecting large kilometers of CAN data is also tedious and time consuming due to various unwanted variables which add up during real world tests. In this paper, a technique known as Rescaled Range Analysis is adapted to abridge the collection of kilometers data from testing by nearly ten times. This analysis estimates a Hurst coefficient to correlate the entire data with its divided parts. The division factor of the entire data is very crucial for the analysis.
2017-03-28
Technical Paper
2017-01-0200
Hongwei Zhang, Liangjin Gui, Zijie Fan
Abstract Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
2017-03-28
Technical Paper
2017-01-0005
Yun Liu, Sung-Kwon Hong, Tony Ge
Abstract Powertrain drivability evaluation and calibration is an important part of vehicle development to enhance the customer experience. This step mainly takes place on vehicle testing very late in the product development cycle, and is associated with a considerable amount of prototype, test facility, human resource and time cost. Design change options at this stage are also very limited. To reduce the development cost, a model based computer aided engineering (CAE) method is introduced and combined with hardware-in-the-loop (HIL) simulation technology. The HIL simulation method offers a possibility for drivability prediction and development in early phase of product cycle. This article describes the drivability HIL simulation process under development in Ford. The process consists of real time capable multi-domain CAE model integration, powertrain control module (PCM) and HIL simulator interface development and drivability HIL simulation.
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
2017-03-28
Technical Paper
2017-01-1262
David Baker, Zachary Asher, Thomas Bradley
Abstract The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
2017-03-28
Technical Paper
2017-01-1118
Isamu Hachisuwa, Naoki Kato, Daisuke Kusamoto, Hideki Miyata, Takuya Okada, Hitoshi matsunaga, Takamitsu Kuroyanagi, Makoto nakazuru
Abstract Increasingly stringent environmental regulations requiring lower CO2 emissions and higher fuel economy have made it essential to develop vehicles with superior fuel efficiency and cleaner emissions. At the same time, there is growing demand for even more powerful and quieter vehicles. To help satisfy these requirements, Toyota Motor Corporation has developed a new 8-speed automatic transmission for front wheel drive vehicles, incorporating its first compact torque converter with a multiple disk lock-up mechanism. This newly developed compact torque converter with a multiple disk lock-up mechanism was designed under the Toyota New Global Architecture (TNGA) development concept to achieve an excellent balance between higher efficiency through the commonization of components and stronger product appeal through installation on a whole family of transmissions. This compact torque converter is compatible with a variety of engines from inline 4-cylinder to V6 configurations.
2017-03-28
Technical Paper
2017-01-1671
Johannes Bach, Marc Holzäpfel, Stefan Otten, Eric Sax
Abstract Enhanced technological capabilities render the application of various, increasingly complex, functional concepts for automated driving possible. In the process, the significance of automotive software for a satisfactory driving experience is growing. To benefit from these new opportunities, thorough assessment in early development stages is highly important. It enables manufacturers to focus resources on the most promising concepts. For early assessment, a common approach is to set up vehicles with additional prototyping hardware and perform real world testing. While this approach is essential to assess the look-and-feel of newly developed concepts, its drawbacks are reduced reproducibility and high expenses to achieve a sufficient and balanced sample. To overcome these drawbacks, new flexible, realistic and preferably automated virtual test methods to complement real world verification and validation are especially required during early development phases.
2017-03-28
Technical Paper
2017-01-1674
Wenxu NIU, Ke Song, Tong Zhang
Abstract X-in-the-loop (XiL) framework is a validation concept for vehicle product development, which integrates different virtual and physical components to improve the development efficiency. In order to develop and validate an extended validation method based on XiL, Tongji University in Shanghai, China and the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany co- performed a feasibility study about an X-in-the-distance-loop demonstration platform. The X-in-the-distance-loop demonstration platform includes a MATLAB/Simulink software platform and geographically distributed equipment (driver simulator, driving electric motor and dynamometer test stand), which are used to conduct bidirectional experiments to test communication of powertrain data between China and Germany.
2017-03-28
Technical Paper
2017-01-0023
Naoya Tsuchiya, Tomohisa Kishigami, Eiichirou Kawakami
Abstract In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
2017-03-28
Technical Paper
2017-01-0198
Jiliang Zhang, Carolyn Wozniak
Component failures in electrical vehicle (EV) charge stations may lead to a complete loss or reduction of charging power available to the vehicles. The multistate coherent structure is employed to model the system reliability and availability of the charging cabinet and station. The number of vehicles and the customer behavior in choosing charge port is considered in the analysis. The methodology is illustrated with a simplified charging cabinet example. The usefulness of the methodology presented in this paper to EV charge station design and service is further discussed. In summary, the framework of a multistate system reliability modeling is developed for EV charge station, which can be used for further studies. The authors believe it can find many engineering applications in EV charge station and beyond.
2017-03-28
Technical Paper
2017-01-0632
Chen Yang, Haiyuan Cheng, Zizhu fan, Jiandong Yin, Yuan Shen
Abstract In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
2017-03-28
Technical Paper
2017-01-0202
Zhigang Wei, Raghuram Mandapati, Ranjith Nayaki, Jason Hamilton
Life testing or test-to-failure method and binomial testing method are the two most commonly used methods in product validation and reliability demonstration. The two-parameter Weibull distribution function is often used in the life testing and almost exclusively used in the extended time testing, which can be considered as an accelerated testing method by appropriately extending the testing time but with significantly reduced testing samples. However, the fatigue data from a wide variety of sources indicate that the three-parameter Weibull distribution function with a threshold parameter at the left tail is more appropriate for fatigue life data with large sample sizes. The uncertainties introduced from the assumptions about the underlying probabilistic distribution would significantly affect the interpretation of the test data and the assessment of the performance of the accelerated binomial testing methods, therefore, the selection of a probabilistic model is critically important.
Viewing 1 to 30 of 2599

Filter