Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 4744
2017-06-05
Technical Paper
2017-01-1769
Onkar Gangvekar, Santosh Deshmane
In today's automobile market, most of OEM's uses manual transmission for Cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is the key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia and which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a grit blasting process has been added. These components are tested with Accelerated test plan successfully.
2017-06-05
Technical Paper
2017-01-1820
Martin Sopouch, Josip Hozmec, Alessandro Cadario
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi–Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain – includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
2017-06-05
Technical Paper
2017-01-1800
Robert White
Several analytical tools exist for estimating a driveshaft’s critical speed, from simple elementary beam theory to sophisticated FEA models. Ultimately, nothing is better than a test, because no one will argue with the outcome from a well-designed measurement. Impact response measurements are easy, but they tend to over predict the critical speed. A test which sweeps the shaft speed up until failure is telling, but the speed causing failure is strongly dependent on even small amounts of variation in rotor unbalance. Waterfall plots of shaft displacement measurements offer the best indication of critical speed, however sometimes the resonance isn’t clearly seen or multiple resonances exist, making the critical speed unclear. A method less susceptible to system variation is offered here, fitting shaft orbit measurements to the theoretical single degree of freedom equation.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Research Objective: For MT vehicles, gearbox rattle is a common NVH problem which influences the comfort level of vehicle. In order to prevent rattle in the design phase of vehicle, this work aimed to study the excitation mechanism and influence factors of gearbox rattle, and then to propose effective measures. Methodology: First, the root cause of gearbox rattle problem was studied with the aid of classical dynamical theories. And then the simulation model of vehicle powertrain system was built via Matlab-Simulink. Then some critical parameters of the model and some experiential optimum proposals were selected to perform a sensitivity analysis on the torsional vibration, which is the root cause of rattle. Referring the simulation results, the dual-mass flywheel was selected as the most effective solution to gearbox rattle. Results: The simulation results indicated the critical parameters for optimization to prevent gearbox rattle problem in the design phase of the vehicle.
2017-06-05
Technical Paper
2017-01-1768
Yong Xu
Purpose: For rear-wheel-drive (or all-wheel-drive) vehicles, the vibration and noise that caused by driveshaft often become the main factors that influence the comfort level of vehicle. In order to control and improve the NVH problems related to driveshaft, this work aimed to study the excitation mechanism and transfer path of driveshaft vibration, and then to propose effective measures. The purpose of this work was to propose an effective way to improve the NVH performance by controlling the additional excitation force of U-joints in the early phase of project. Methodology: First, the rotation order characteristics of driveshaft were studied with the aid of classical dynamics. Then a rigid-elastic coupling model of vehicle powertrain was modelled with the theory of multi-body dynamics. By inputting the actual vehicle parameters into the model, the acceleration operation of vehicle could be simulated.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking system. The torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), in the presence of external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, may lead to NVH issues known as clonk. In this study, first of all the positive effect of a brake torque application at the driving wheels during such maneuvers on transmission NVH performance is shown. After that, a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize the energy loss.
2017-06-05
Technical Paper
2017-01-1823
Dennis J. Kinchen
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. As is typical of natural materials, the properties have variation resulting in a tolerance around the nominal specification which leads to differences in noise and vibration performance. A system that is robust to this variation is desired. The design and development process requires evaluation of these mounts to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system a library of mounts that include the range of production variation is studied however this is time consuming. In this paper, a methodology is described to reduce the hardware evaluation time and provide a recommended optimal solution that is robust in the presence of production mount property variation.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation... Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions. This paper presents an electromagnetic actuator technology, that can be considered as the best tradeoff between performances and cost.
2017-06-05
Technical Paper
2017-01-1845
Jon Furlich, Jason Blough, Darrell Robinette
When subjected to high speeds and high torques, a vehicle driveshaft and other powertrain components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clutch clatter during the shift event. A smooth shift is desired by the customer thus reduction of the clutch clatter will improve customer experience and satisfaction. In this study, a six speed MT, RWD passenger car was used to experimentally capture acoustic and vibration data during the clutch clatter event. To successfully replicate the in-situ results additional data was collected and analyzed for powertrain component roll, and pitch from the test vehicle. These boundary conditions were applied to a reduced car model in a lab environment to successfully replicate the clutch clatter event on a stationary test stand.
2017-06-05
Technical Paper
2017-01-1779
Xianwu Yang, Jian Pang, Lanjun Wang, Xiong Tian, Yu Tang
With the development of automobile industry, the higher NVH performance is required for customers, and with drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode of powertrain system has a direct relationship with transmission gear rattle noise, the higher torsional vibration leads to more serious gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model.
2017-06-05
Technical Paper
2017-01-1907
Yang Wang, Yong Xu, Xiao Tan
OPTIMIZATION OF THE POWERTRAIN MOUNTING SYSTEM VIA DOE METHOD Authors: Wang Yang*, Wang Hui*, Xu Yong* * NVH Section, Brilliance-Auto Engineering Research Institute, Shenyang, China, 110141 Key Words: NVH; DOE; Powertrain Mounting System; Analysis of Variance Research and/or Engineering Questions/Objective The vibration isolation performance of vehicle powertrain mounting system is mostly determined by the three-directional stiffnesses of each mount block. Because of the manufacturing tolerance and the coupling effect, the stiffnesses of mounts cannot be maintained stable. The purpose of this study was to find out the way to optimize the stiffnesses of mounts via the design of experiments (DOE). Methodology According to the DOE process, a full factorial design was implemented. The z-direction stiffnesses of three mount blocks in the mounting system were selected as the three analysis factors.
2017-06-05
Technical Paper
2017-01-1835
Nader Dolatabadi, Ramin Rahmani, Stephanos Theodossiades, Homer Rahnejat, Guy Blundell, Guillaume Bernard
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, fuel efficiency and start-up functionality at extended ambient conditions, such as cold start-up and low intake absolute pressure are crucial. Off-road vehicle manufacturers usually overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in the off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribology behaviour of clutch will be crucial to start engagement in time and reach the maximum clutch capacity in the shortest possible time and the safest method in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. Flywheel carries the same speed and torque as engine and represents the engine input to the clutch.
2017-06-05
Technical Paper
2017-01-1818
Ramya Teja, T. R. Milind, Rodney C. Glover, Sunil Sonawane
Helical gears are used more commonly than spur gears due to their higher load carrying capacity, efficiency and lower noise. Helical gear pairs consist of base and axial planes in the plane of action. Transmission Error (TE) is considered as a dominant source of gear whine noise so gears pairs are analyzed and designed for lower TE. In process of designing helical gears for lower TE, the shuttling moment can be a significant excitation source. A shuttling moment is caused by the shifting of the centroid of the tooth normal force back and forth across the lead. Shuttling force is produced by a combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from the gear box or transmission at is gear mesh frequency and harmonics. LDP provides shuttling force as a bearing force in the base plane direction at one edge of the face width only.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
The automotive industry continues to develop new technologies aimed at reducing overall vehi-cle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of tech-nologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital to-wards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is impera-tive that these NVH challenges be understood and solved.
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions. A series of parametric studies are also performed to analyze the effects of various shaft-bearing configurations and properties on the dynamic responses of the geared system.
2017-06-05
Technical Paper
2017-01-1801
Sivasankaran Sadasivam, Aditya Palsule, Ekambaram Loganathan, Nagasuresh Inavolu, Jaganmohan Rao Medisetti
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. Sound intensity mapping technique identifies and quantifies the spatial distribution of energy radiated by powertrain by means of measurements close to its surface. Based on the quantification, noise sources are ranked, through which Oil sump is identified as one of the major contributors for powertrain noise radiation. Accurate prediction of oil sump modal characteristics is more critical in determining the sound power radiation. This paper discusses about capability of numerical approach in predicting more realistically, oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results. With this validated model, radiated sound power level of the oil sump has been predicted using acoustic finite element method.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and an overall more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-04-11
Journal Article
2017-01-9176
Jitesh Shukla, A Grinspan, Jeyanthi subramanian
Abstract Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
2017-03-28
Technical Paper
2017-01-1136
Jack S.P. Liu, Natalie Remisoski, Javed Iqbal, Robert Egenolf
Automotive vehicles equipped with Cardan joints may experience low frequency vehicle launch shudder vibration (5-30Hz) and high frequency driveline moan vibration (80-200Hz) under working angles and speeds. The Cardan joint introduces a 2nd order driveshaft speed variation and a 4th order joint articulation torque (JAT) causing the vehicle shudder and moan NVH issues. Research on the Cardan joint induced low frequency vehicle shudder using a Multi-Body System (MBS) method has been attempted. A comprehensive MBS method to predict Cardan joint induced high frequency driveline moan vibration is yet to be developed. This paper presents a hybrid MBS and Finite Element Analysis (FEA) approach to predict Cardan joint induced high frequency driveshaft moan vibration. The CAE method considers the elastically coupled driveshaft bending and engine block vibration due to Cardan joint excitation.
2017-03-28
Technical Paper
2017-01-1137
Xiaofeng Yin, Han Lu, Xiaohua Wu, Yongtong Zhang, Wei Luo
Abstract For the vehicle equipped with stepped automatic transmission (SAT) that has a fixed number of gears, gearshift schedule is crucial to improve the comprehensive performance that takes into account power performance, fuel economy, and driver’s performance expectation together. To optimize and individualize the gearshift schedule, an optimization method and an improved performance evaluation approach for multi-performance gearshift schedule were proposed, which are effective in terms of reflecting the driver's expectation on different performance. However, the proposed optimization method does not consider the influence of the road slope on the comprehensive performance. As the road slope changes the load of vehicle that is different from the load when a vehicle runs on a level road, the optimized gearshift schedule without considering road slope is obviously not the optimal solution for a vehicle equipped with SAT when it runs on ramp.
2017-03-28
Technical Paper
2017-01-1140
Yang Xu, Yuji Fujii, Edward Dai, James McCallum, Gregory Pietron, Guang Wu, Hong Jiang
Abstract A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
2017-03-28
Technical Paper
2017-01-1108
Yulong Lei, Yao Fu, Ke Liu, Li Xingzhong, Zhenjie Liu, Yin Zhang, Xuanyi Fu
Abstract Selection of gearshift point plays an important role in the field of automatic transmission technology, which directly affects the vehicle dynamic and economic performance, etc. In order to designing optimal gearshift strategies for conventional passenger vehicles equipped with stepped automatic transmission, in this paper, the vehicle power demand was defined under different environment, different driving intention and different vehicle operating conditions. Dynamic programming (DP) method is used to solve the optimal static gearshift decision sequence based on the simplified model of powertrain system. The drivability is respected by imposing an inequality constraint on the power reserve limit and the fuel economy is the objective function. Considering the change of vehicle additional load and road slope, the gearshift strategy based on power reserve is proposed.
2017-03-28
Technical Paper
2017-01-1109
Keisuke Ota, Masami Kondo, Shuntaro Shinohara, Norihiro Tsukamoto, Seiji Masunaga, Ayumu Sagawa
Abstract To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
2017-03-28
Technical Paper
2017-01-1110
Muammer Yolga, Markus Bachinger
Abstract With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
2017-03-28
Technical Paper
2017-01-1112
Jian yao, Li Chen, Ding Zhao Jr, Chunhao Lee, Ying Huang, Yin Chengliang
Abstract The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
2017-03-28
Technical Paper
2017-01-1259
Eduardo D. Marquez, John Stevenson, Ethan Dietrich, Douglas Nelson, Christopher Flake, Alexander Neblett, Samuel Reinsel
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
2017-03-28
Technical Paper
2017-01-1103
Sergei Aliukov, Andrei Keller, Alexander Alyukov
Abstract The inertial continuously variable transmission is a mechanical transmission which is based on the principle of inertia. This transmission has a lot of advantages, namely: compactness, minimum friction losses and high efficiency as a result of the relatively small number of rotating components, a wide range of transformation of the torque. It does not need any conventional friction clutches. This transmission protects the engine from overload when the output shaft is braked. This drive guarantees optimum conditions of work for the engine regardless of the changing of load, and smoothly changes output speed according to the load. Mostly, design of this transmission consists of a pulsed mechanism with unbalanced inertial units and two overrunning clutches. The objects of the investigation are structural dynamic analysis of the continuously variable transmission. The physical and mathematical models of this transmission are developed.
2017-03-28
Technical Paper
2017-01-1104
William D. Dunham, Jinwoo Seok, Weitian Chen, Edward Dai, Ilya Kolmanovsky, Anouck Girard
Abstract The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
2017-03-28
Technical Paper
2017-01-1105
Sergei Aliukov, Alexander Alyukov
Abstract The inertial continuously variable transmissions are mechanical transmissions that are based on the principle of inertia. These transmissions have a lot of advantages. Usually, the design of the inertial continuously variable transmissions consists of inertia pulsed mechanism with unbalanced inertial elements and two overrunning clutches. Dynamics of the transmissions is described by systems of substantial nonlinear differential equations. In general, precise methods of solution for such equations do not exist. Therefore, in practice, approximate analytical and numerical methods must be employed. The main analytical methods employ successive approximation, a small parameter, or power series expansion. Each approach has its advantages and disadvantages. Therefore, we need to compare them in order to select the best method for dynamic study of such kind of transmissions.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
Viewing 1 to 30 of 4744