Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 4780
2017-11-27
Technical Paper
2017-01-7011
Sandip Phapale, Pavan Sindgikar, Narayan Jadhav
Abstract Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
2017-11-17
Technical Paper
2017-01-5020
Mark Stuhldreher, Youngki Kim, John Kargul, Andrew Moskalik, Daniel Barba
Abstract As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
2017-11-05
Technical Paper
2017-32-0054
Iman Kartolaksono Reksowardojo, Phonethip Trichanh, Kevin Ferdyamin, Mega Zulfikar Akbar
This research aims to investigate the effect of ethanol blends with pure gasoline to the rate of fuel consumption and emissions of fuel injection motorcycle 115 cc with automatic transmission which is the population is dominant in Indonesia. Variations of the bioethanol mixture are 0%, 5%, 10%, and 20% ethanol. The experiment conducted in two different conditions by using three ways catalytic converter (TWC) in the exhaust pipe and without using TWC in the exhaust pipe. First, all engine setting was originally manufacture setting. Second, the AFR is set in stoichiometry condition (λ = 1) and ignition timing set in MBT timing using modified ECU. The experiment performed on the chassis dynamometer and referred on the standard cycle ECE 15. The results of this experiment showed that increment of ethanol content in the fuel makes the rate of fuel consumption and CO2 emission both increased but CO and HC emissions decreased.
2017-11-05
Technical Paper
2017-32-0071
Jürgen Tromayer, Michael Gaber, Roland Kirchberger, Fern Thomassy, Scott McBroom
Abstract Meeting upcoming emission limits such as EURO 5 with comparatively simple and low-cost vehicles will be very challenging. On the engine side, a big effort in terms of fuelling, combustion optimization as well as exhaust gas aftertreatment will be necessary without any doubt. Besides that, additional system optimization potential can be gained by a systematic adaptation of the drive train. One approach is to use a CVT (Continuously Variable Transmission) system to run engines in specific ranges with good fuel economy. However, existing belt driven CVTs show comparatively poor efficiencies. To overcome this drawback, the integration of a novel Continuously Variable Planetary Transmission (CVP), designed and developed by Fallbrook Technologies, was investigated in detail. For this purpose, a longitudinal dynamics simulation in Matlab-Simulink was carried out to compare a standard mass production vehicle drive train with several CVP setups.
2017-11-05
Technical Paper
2017-32-0028
Huang Hui-Hui, Tsai Chien-Hsiung, He Wei-Ta
In this study, the temperature of solid/fluid inside a continuously variable transmission (CVT) of a 400 cc scooter is investigated numerically utilizing ANSYS FLUENT. The moving reference frame (MRF) technique with conjugate heat transfer between gases and solid rotation/translation are implemented to carry out the simulation. The emphasis of the present study is put on the effects of CVT housing configuration, belt’s thermal conductivity, and the heat dissipated from the crankcase on the thermal-flow-field of CVT. The numerical results show that the temperature of the drive/driven pulleys are concurred with those of experimental results. It is found that the proposed design of partition plate inside the CVT housing can direct the flow into belt and prevent the fluid around driven and drive pulley from mixing, and can further decrease the temperatures of the belt and pulley.
2017-11-05
Technical Paper
2017-32-0124
Ashutosh Jahagirdar, Ravindra Kharul, Nitin Bhone, Ashok Kulkarni
Anti-Hop Clutches are popular for bikes above 400 cc. They offer the advantage of better driving stability in lower gears and during down shifting. The currently used designs of such clutches are having different constructions with complex geometry parts and almost 30% more number of parts (compared to standard clutch) are used in some designs to achieve the desired 'Driving Assist' and 'Coasting Slip' effect. The production process used, demands for specialized tools for manufacturing the complex geometry of parts and the price of the clutch assembly is more than double as compared to standard, equivalent design of multi plate wet clutches. These type of clutches are commonly known as - Anti Hop Clutch or Slipper Clutch or Assist and Slip clutches. To achieve same performance benefits with simpler design, less number of parts with a Flexibility to alter the Assist and Slip effect to suit the application, Endurance Technologies Ltd. developed a new concept.
2017-10-08
Technical Paper
2017-01-2442
Bingqing Xiao, Wei Wu, Jibin Hu, Shihua Yuan, Chenhui Hu
Abstract The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
2017-10-08
Technical Paper
2017-01-2443
Ziwang Lu, Hongxu Chen, Lijun Wang, Guangyu Tian
Abstract During the engaging process of sleeve and teeth ring in mechanical transmissions, their rotational speed and position differences cause multiple engaging ways and trajectories, and casual impacts between them will delay the engaging process and cause a long power off time for a gear shift. In order to reveal the engaging mechanism of the sleeve and the teeth ring, it is essential to build a high-fidelity model to cover all of their engaging ways and capture their speed changes for an impact. In this work, our contribution is that their impact process is modeled as a precise, continuous and nonlinear damping model, and then a hybrid automaton model is built to connect the system dynamics in different mechanical coupling relationships.
2017-10-08
Technical Paper
2017-01-2441
Zhao Ding, Li Chen, Chengliang Yin, Jian Yao, Chunhao Lee, Farzad Samie
Abstract Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
2017-10-08
Technical Paper
2017-01-2439
Srinivasan Paulraj, Saravanan Muthiah
Abstract Poor clutch life is a major issue for some light commercial vehicle models. Clutch overheating is the primary cause for clutch failure. Some of the reasons include inappropriate gear selection by the driver, poor low-end dynamic torque availability from an engine, heavy stop and go traffic, vehicle overloading resulting in excessive clutch slippage especially in gradients, riding of the clutch pedal by the customer etc. These situations lead to a high thermal energy dissipation at the clutch, increasing clutch wear and in extreme conditions leading to not only poor shift quality but also eventual clutch failure. Unfortunately, it is not practical to monitor clutch temperature in a production vehicle due to high costs or technical challenges involved. This paper describes 1-D thermal modeling of single plate dry clutch typically used in passenger car/truck and bus applications.
2017-10-08
Technical Paper
2017-01-2437
Renjith S, Vinod Kumar Srinivasa, Umesh Venkateshaiah
Abstract The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
2017-10-08
Technical Paper
2017-01-2462
Ruipeng Zhang, Kaichuang Meng
Abstract Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
2017-10-08
Technical Paper
2017-01-2460
Wenbin Liu, Qiang Song, Yiting Li, Wanbang Zhao
Abstract In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
2017-10-08
Technical Paper
2017-01-2205
Velmurugan M A, MahendraMohan Rajagopal
Abstract Agricultural tractors are often subjected to various applications like front end loading work, cultivation work, where frequent forward and reverse gears are needed. Most of Indian agricultural tractors are equipped with mechanical transmission system which demands repeated clutching and de-clutching operation for such applications resulting in increased operator fatigue and lesser productivity. Also need of electronics in Indian agricultural industry for better farm mechanization is growing high. This research work depicts development of electronic bi-directional shifting (power shuttle) control design and calibration for farm vehicle fitted with wet clutch transmission. This research also reduces operator fatigue via frequent directional shift through electronic transmission. The control system is designed without any electronic interfacing with engine and also provides clutch-less gear shifting and auto-launch which offers ease to drive even for novice driver.
2017-10-08
Technical Paper
2017-01-2355
Yungwan Kwak, Christopher Cleveland
Abstract Due to its simplicity and fuel economy benefit, continuously variable transmission (CVT) technology has gained a lot of attention in recent years. Market penetration of CVT technology is increasing rapidly compared to step-type automatic transmission technology. OEMs, Tier 1 suppliers, and lubricant suppliers are working to further improve the fuel economy benefit of CVTs. As a lubricant supplier, we want to understand the effects of fluid properties on CVT fuel economy (FE). We have formulated fluids that had KV100 ranges from 2-4 cSt to 7-9 cSt with various types and viscosities of base oils. Wide ranges of viscosity indexes, steel-on-steel friction, and other properties were tested. Full vehicle fuel economy tests were performed in a temperature controlled environment with a robotic driver. The test revealed that there was more than 3% overall FE variation compared to a reference fluid.
2017-10-08
Technical Paper
2017-01-2435
Jian Ji, BoZhou He, Lei Yuan
Abstract It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
2017-10-08
Technical Paper
2017-01-2358
Michael P Gahagan
Abstract The automotive vehicle market has seen an increase in the number of hybrid electric vehicles (HEVs), and forecasts predict additional growth. In HEVs, the hybrid drivetrain hardware can combine electric motor, clutches, gearbox, electro-hydraulics and the control unit. In HEV hardware the transmission fluid can be designed to be in contact with an integrated electric motor. One transmission type well-suited to such hybridization is the increasingly utilized dual clutch transmission (DCT), where a lubricating fluid is in contact with the complete motor assembly as well as the DCT driveline architecture. This includes its electrical components and therefore raises questions around the suitability of standard transmission fluids in such an application. This in turn drives the need for further understanding of fluid electrical properties in addition to the more usually studied engineering hardware electrical properties.
2017-10-08
Journal Article
2017-01-2356
Hyun-Soo Hong, Christopher Engel, Brian Filippini, Sona Slocum, Farrukh Qureshi, Tomoya Higuchi
Abstract Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
2017-10-08
Journal Article
2017-01-2445
Santosh Deshmane, Onkar P. Gurav, Vipul Sahu
Abstract Today’s automotive industry is facing cutthroat competition, especially in passenger vehicle business. Manufacturers around the globe are developing innovative and new products keeping focus on end customer; thus customer's opinion and perception about the product has become a factor of prime importance. Customer touch points such as gear shift lever, clutch, brakes, steering etc. are thus gaining more and more importance. Car companies are trying to induce more and more luxuries in these touch points so that they impress customer and create a positive opinion about the product. On the other hand manufacturers are also trying to manage profits. Companies thus need to find the best fit solution for improvising customer touch points with optimized costs. The performance of these touch points is driven by subsystems of mechanical components like mechanical linkage.
2017-10-08
Journal Article
2017-01-2434
Srinivasan Paulraj, Saravanan Muthiah
Abstract Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
2017-10-08
Journal Article
2017-01-2436
Santosh Deshmane, Onkar Gangvekar, Samson Rajakumar
Abstract In today’s competitive automobile market, driver comfort is at utmost importance and the bar is being raised continuously. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will impact the brand image. While there are continual efforts being taken by most of the car manufactures, “Double Bump” in gearshift has remained as a pain area and impact severely on the shift feel. This is more prominent in North-South (N-S) transmissions. In this paper ‘Double Bump’ is a focus area and a mathematical / analytical approach is demonstrated by analyzing ‘impacting parameters’ and establishing their co-relation with double bump. Additionally, the results are also verified with a simulation model.
2017-10-08
Journal Article
2017-01-2446
Pengchuan Wang, Nikolaos Katopodes, Yuji Fujii
Abstract Wet clutch packs are the key component for gear shifting in the step-ratio automatic transmission system. The clutch plates are coupled or de-coupled to alter gear ratios based on the driver’s actions and vehicle operating conditions. The frictional interfaces between clutch plates are lubricated with automatic transmission fluid (ATF) for both thermal and friction management. In a 10-speed transmission, there may be as many as 6 clutch packs. Under typical driving conditions, 2 to 3 clutch packs are open, shearing ATF and contributing to energy loss. There is an opportunity to improve fuel economy by reducing the associated viscous drag. An important factor that directly affects clutch drag is the clearance between rotating plates. The axial position of clutch plates changes continuously during operation. It is known in practice that not only the total clearance, but also its distribution between the plates affects the viscous drag.
2017-09-23
Technical Paper
2017-01-1991
Adit Joshi
The automotive industry is heading towards the path of autonomy with the development of autonomous vehicles. An autonomous vehicle consists of two main components. The first is the software which is responsible for the decision-making capabilities of the system. The second is the hardware which encompasses all aspects of the physical vehicle which are responsible for vehicle motion such as the engine, brakes and steering subsystems along with their corresponding controls. This component forms the basis of the autonomous vehicle platform. For SAE Level 4 autonomous vehicles, where an automated driving system is responsible for all the dynamics driving tasks including the fallback driving performance in case of system faults, redundant mechanical systems and controls are required as part of the autonomous vehicle platform since the driver is completely out of the loop with respect to driving.
2017-09-19
Technical Paper
2017-01-2033
Minh-khoa. Lam, Christopher Buterhaugh, Luis Herrera, Bang Tsao
Abstract The amount of electrical power required for future aircraft is increasing significantly. In this paper, a comprehensive model of a drive shaft with multiple degrees of freedom was developed and integrated to detailed engine and electrical network models to study the impact of higher electrical loads. The overall system model is composed of the engine, shafts, gearbox, and the electric network. The Dynamic Dual Spool High Bypass JT9D engine was chosen for this study. The engine was modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. In the electrical side, one generator was connected to the Low Pressure (LP) shaft and the other to the High Pressure (HP) shaft. A modified model of the shafts between the engine and the accessory gearbox was created.
2017-09-19
Technical Paper
2017-01-2123
Violet Leavers
Abstract The need to maintain aircraft in remote, harsh environments poses significant challenges. For example, in desert assignments or on-board carrier vessels where frequent rotation of staff with variable levels of skill and experience requires condition monitoring equipment that is not only robust and portable but also user friendly and requiring a minimum of training and skill to set up and use correctly. The mainstays of any on-site aircraft maintenance program are various fluid and particulate condition monitoring tests that convey information about the current mechanical state of the system. In the front line of these is the collection and analysis of wear debris particles retrieved from a component’s lubricating or power transmission fluid or from magnetic plugs. It is standard practice within the specialist laboratory environment to view and image wear debris using a microscope.
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Abstract Within the aviation industry analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work develops interactive software for wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified by a number of experts. At each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-04
Technical Paper
2017-24-0173
Jean-Charles Dabadie, Antonio Sciarretta, Gregory Font, Fabrice Le Berr
Abstract Due to more and more complex powertrain architectures and the necessity to optimize them on the whole driving conditions, simulation tools are becoming indisputable for car manufacturers and suppliers. Indeed, simulation is at the basis of any algorithm aimed at finding the best compromise between fuel consumption, emissions, drivability, and performance during the conception phase. For hybrid vehicles, the energy management strategy is a key driver to ensure the best fuel consumption and thus has to be optimized carefully as well. In this regard, the coupling of an offline hybrid strategy optimizer (called HOT) based on Pontryagin’s minimum principle (PMP) and an online equivalent-consumption-minimization strategy (ECMS) generator is presented. Additionally, methods to estimate the efficiency maps and other overall characteristics of the main powertrain components (thermal engine, electric motor(s), and battery) from a few design parameters are shown.
2017-09-04
Technical Paper
2017-24-0172
Haijun Chen, Lin Li, Mark Schudeleit, Andreas Lange, Ferit Küçükay, Christian Stamme, Peter Eilts
Abstract In view of the rapidly increasing complexity of conventional as well as hybrid powertrains, a systematic composition platform seeking for the global optimum powertrain is presented in this paper. The platform can be mainly divided into three parts: the synthesis of the transmission, the synthesis of the internal combustion engine (ICE) and the optimization and evaluation of the entire powertrain. In regard to the synthesis of transmission concepts, a systematical and computer-aided tool suitable both for conventional und hybrid transmissions is developed. With this tool, all the potential transmission concepts, which can realize the desired driving modes or ratios, can be synthesized based on the vehicle data and requirements.
2017-09-04
Journal Article
2017-24-0160
Mario Marchetti, Riccardo Russo, Salvatore Strano, Mario Terzo
Abstract The activity described in this paper has been carried out in the framework of a funded project aimed at evaluating the feasibility of a controllable water pump based on an integrated magnetorheological fluid clutch. The advantages consist of an improvement of the overall vehicle performance and efficiency, in the possibility of disengaging the water pump when its action is not required, and in the control of the cooling fluid temperature. So, the design constraints have been defined with reference to the available space, required torque, and electrical power. After an iterative procedure, in which both mechanical design and magnetic field analyses have been considered, the most promising solution has been defined and a first physical prototype has been realized and tested. A preliminary experimental characterization of the developed prototype has been presented.
2017-07-10
Technical Paper
2017-28-1939
Maruti Patil, Penchaliah Ramkumar, Shankar Krishnapillai
Abstract Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
Viewing 1 to 30 of 4780