Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 4752
2017-09-16
Journal Article
2017-01-9180
Johannes Wurm, Eetu Hurtig, Esa Väisänen, Joonas Mähönen, Christoph Hochenauer
Abstract The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
2017-09-04
Technical Paper
2017-24-0173
Jean-Charles Dabadie, Antonio Sciarretta, Gregory Font, Fabrice Le Berr
Due to more and more complex powertrain architectures and the necessity to optimize them on the whole driving conditions, simulation tools are becoming indisputable for car manufacturers and suppliers. Indeed, simulation is at the basis of any algorithm aimed at finding the best compromise between fuel consumption, emissions, drivability, and performance during the conception phase. For hybrid vehicles, the energy management strategy is a key driver to ensure the best fuel consumption and thus has to be optimized carefully as well. In this regard, the coupling of an offline hybrid strategy optimizer (HOT) based on Pontryagin’s minimum principle (PMP) and an online equivalent-consumption-minimization strategy (ECMS) generator is presented. Additionally, methods to estimate the efficiency maps and other overall characteristics of the main powertrain components (thermal engine, electric motor(s), and battery) from a few design parameters are shown.
2017-09-04
Technical Paper
2017-24-0172
Haijun Chen, Lin Li, Mark Schudeleit, Andreas Lange, Ferit Küçükay, Christian Stamme, Peter Eilts
In view of the rapidly increasing complexity of conventional as well as hybrid powertrains, a systematic composition platform seeking for the global optimum powertrain is presented in this paper. The platform can be mainly divided into three parts: the synthesis of the transmission, the synthesis of the engine and the optimization and evaluation of the entire powertrain. In regard to the synthesis of transmission concepts, a systematical and computer-aided tool suitable both for conventional und hybrid transmission is developed. With this tool, all the potential transmission concepts, which can realize the desired driving modes or ratios, can be synthesized based on the vehicle data and requirements. As a result of the transmission synthesis, the detailed information of each transmission concept, including the transmission structure, the shifting logic, the estimated efficiency in each gear, and the estimated space arrangement of the transmission can be given out.
2017-09-04
Technical Paper
2017-24-0160
Mario Marchetti, Riccardo Russo, Salvatore Strano, Mario Terzo
Magnetorheological fluids (MRFs) appear particularly functional for automatic clutch applications due to their capability of rapidly increasing their shear strength when subjected to a magnetic field, and being a viscous fluids when the magnetic field is turned off. They have been investigated since the late 1940s and are employed in different operating modes: in particular, the shear mode is adopted in clutches and brakes. In addition to the controllable property, they have the advantage, with respect to conventional clutches, of not requiring axial loading and the absence of wear. The activity described in this paper has been carried out in the framework of a funded project aimed at evaluating the feasibility of a controllable water pump based on an integrated MRF clutch.
2017-08-29
Journal Article
2017-01-9000
Teresa Donateo, Antonio Ficarella
Abstract The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
2017-07-10
Technical Paper
2017-28-1939
Maruti Patil, Penchaliah Ramkumar, Shankar Krishnapillai
Abstract Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
2017-07-10
Technical Paper
2017-28-1943
Anil Kumar Jaswal, Rajasekhar MV, Pradeep C
Abstract This paper details about the approach and challenges in converting a conventional vehicle platform designed for diesel/gasoline powertrain into an electrified one. It is not always feasible to accommodate electric powertrain in conventional platforms based on the target requirements. Electrification of conventional vehicles will cut back dependence on fossil fuels, emission of greenhouse gases and emission of pollutants. Fossil fuel are going to be depleted in few decades. Moreover, the emission from traditional vehicle has raised a huge threat to the atmosphere. Auto OEM’s have recognized that electric drive vehicles are critical to the future of the industry. However, some difficulties exist to more noteworthy selection: the view of cost, EV range, access to charging, potential impacts, and absence of open mindfulness about the accessibility and common sense of these vehicles.
2017-07-10
Technical Paper
2017-28-1961
Shishir Sirohi, Saurabh Yadav, B. Ashok, V Ramesh Babu, C Kavitha, K Nantha Gopal
The main objective of the study is to design and analyze casing and supports of a transmission system for an electric vehicle. The system comprises of motors as the power source, constant mesh gear box coupled with limited slip differential as the power transmitting source. The space occupied by the transmission system is a foremost constraint in designing the system. The wear and tear in the system are caused by the gear meshing process and transmission error which lead to failure of the transmission system. This internal excitation also produces a dynamic mesh force, which is transmitted to the casing and mounts through shafts and bearings. In order to overcome such issues in a transmission system, a gear box casing, differential mounts and motor mounts have been designed by the use of CAD-modelling software “SOLIDWORKS”. The designs were imported to FEA software “ANSYS” for carrying out static structural analysis.
2017-06-05
Technical Paper
2017-01-1800
Robert White
Abstract Several analytical tools exist for estimating a driveshaft’s critical speed, from simple elementary beam theory to sophisticated FEA models. Ultimately, nothing is better than a test, because no one will argue with the outcome from a well-designed measurement. Impact response measurements are easy, but they tend to over predict the critical speed. A test which sweeps the shaft speed up until failure is telling, but the speed causing failure is strongly dependent on even small amounts of variation in rotor unbalance. Waterfall plots of shaft displacement measurements offer the best indication of critical speed, however sometimes the resonance isn’t unmistakable or multiple resonances exist, making the critical speed unclear. A method less susceptible to system variation is offered here, fitting shaft orbit measurements to the theoretical single degree of freedom equation.
2017-06-05
Technical Paper
2017-01-1801
Sivasankaran Sadasivam, Aditya Palsule, Ekambaram Loganathan, Nagasuresh Inavolu, Jaganmohan Rao Medisetti
Abstract Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1769
Onkar Gangvekar, Santosh Deshmane
Abstract In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
2017-06-05
Technical Paper
2017-01-1768
Yong Xu
Abstract The NVH performance is one of the most important concerns in vehicle development. For all-wheel drive (AWD) vehicles and rear-wheel (RWD) drive vehicles, prop shaft is a major transmission component which may cause various NVH problems. This paper focuses on the vehicle NVH problems caused by the second order excitation force of prop shaft. In order to control the NVH performance of the prop shaft efficiently and fundamentally, this work first studied the rotation kinematical characteristics of prop shaft. Then a rigid-elastic coupling model of vehicle driveline was built with the theory of multi-body dynamics. With this model, the sensitive factors that may affect the second order excitation force were investigated. This paper also describes a case study to verify the conclusions which are revealed from the theoretical calculation and the simulation.
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
Abstract The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
Abstract The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-06-05
Technical Paper
2017-01-1779
Xianwu Yang, Jian Pang, Lanjun Wang, Xiong Tian, Yu Tang
Abstract With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1907
Yang Wang, Yong Xu, Xiao Tan
Abstract The vibration isolation performance of vehicle powertrain mounting system is mostly determined by the three-directional stiffness of each mount block. Because of the manufacturing tolerance and the coupling effect, the stiffness of mounts cannot be maintained stable. The purpose of this study was to find out the way to optimize the stiffness of mounts via the design of experiments (DOE). According to the DOE process, a full factorial design was implemented. The z-direction stiffness of three mount blocks in the mounting system was selected as the three analysis factors. The maximum and the minimum stiffness of each mount block within the manufacturing tolerance were selected as the two levels. The measured vibration of vehicle body under certain loading case was selected as the response factor. After eight times of experiment, the DOE parameters were analyzed with statistical methods.
2017-06-05
Technical Paper
2017-01-1867
Mustafa Tosun, Mehdi Yildiz, Aytekin Ozkan
Abstract Structure borne noises can be transmitted to interior cabin via physical connections by gearbox as well as other active components. Experimental Transfer Path Analysis (TPA) Methods are utilized to investigate main paths of vibrations which are eventually perceived as noise components inside the cabin. For identifying the structure and air borne noise transfer paths in a system, Matrix Inversion (MI), Mount Stiffness (MS), Operational Transfer Path Analysis (OTPA) and Operational Path Analysis with Exogenous Inputs (OPAX) Methods exist. In this study, contribution ranking of transmission paths from active system components through the physical connections into the interior cabin are investigated by MI and OPAX Methods and finally a comparison of them is presented based on the accuracy of obtained results. The modifications are applied on dominant transfer paths which are determined by the mentioned methods above, respectively.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
Abstract The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation… Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions.
2017-06-05
Technical Paper
2017-01-1820
Martin Sopouch, Josip Hozmec, Alessandro Cadario
Abstract This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
2017-06-05
Technical Paper
2017-01-1823
Dennis J. Kinchen
Abstract Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
2017-06-05
Technical Paper
2017-01-1818
Ramya Teja, T. R. Milind, Rodney C. Glover, Sunil Sonawane
Abstract Helical gears are commonly used instead of spur gears due to their potential higher load carrying capacity, efficiency and lower noise. Transmission Error (TE) is defined as deviation from perfect motion transfer by a gear pair. TE is dominant source of gear whine noise and hence gears pairs are generally analyzed and designed for low TE. In the process of designing helical gears for lower TE, the shuttling moment can become a significant excitation source. Shuttling moment is caused due to shifting of the centroid of tooth normal force back and forth across the lead. The amount of shuttling force or moment is produced by combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from gear box or transmission at its gear mesh frequency and harmonics.
2017-06-05
Technical Paper
2017-01-1845
Jon Furlich, Jason Blough, Darrell Robinette
Abstract When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
2017-06-05
Technical Paper
2017-01-1835
Nader Dolatabadi, Ramin Rahmani, Stephanos Theodossiades, Homer Rahnejat, Guy Blundell, Guillaume Bernard
Abstract Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS.
2017-05-10
Technical Paper
2017-01-1934
Takashi Sasaki
In Japan, environmentally-friendly vehicles, such as HV, PHV, EV, and FCV, have been researched and developed as solutions to the energy and environmental problems, but none of these vehicles have been fully satisfactory in all respects, such as environmental performance, vehicle performance, and adaptability to existing infrastructure. Hino Motors, Ltd. launched a hybrid bus in 1992 as a pioneer in hybrid commercial vehicles and has sold more than 10,000 hybrid buses and trucks. An electric-powered minibus designed under the concept of short travel distance and high charging frequency was developed to make use of Hino’s abundant experience in the development of HV and the past market results it has achieved. Since 2012, these buses have operated in three areas as community buses.
2017-05-10
Technical Paper
2017-01-1937
Heimo Schreier, Burak Aliefendioglu, Roger Perthen, Jürgen Tochtermann
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
2017-05-10
Technical Paper
2017-01-1927
Andreas Graef
China’s construction equipment (CE) market has been shrinking since 2011 with only few machinery segments gaining sales in last few years. Most of China’s CE machinery segments are already highly concentrated with few major Chinese CE OEMs contributing the majority of sales volume in each machinery segment. Machinery segments with more advanced technology such as crawler excavators see the rise of Chinese CE OEM competing with their international peers on market shares. Chinese full-liner OEMs are expected to shift their global M&A strategies in light of China’s enforced governmental control of capital outflows and increased scrutiny over the authenticity and compliance of overseas investments. With this market and competitor dynamics in China, the key question for international CE powertrain system and component supplier is how Chinese CE OEM and engine supplier develop and source their key powertrain components in future.
2017-05-10
Technical Paper
2017-01-1930
Chris Thorne
This paper describes the development of a flexible, scalable, cost effective and efficient Continuously Variable Transmission (“CVT”) that provides significant fuel efficiency benefits in both off and on-highway applications and configurations. The goal of the project was to design, develop and demonstrate such a transmission in both the test cell and on the vehicle. Currently, the innovative transmission is undergoing vehicle testing having successfully completed all previous phases. Through this work the Energy Technologies Institute (“ETI”) is attempting to provide technical confidence in the demonstrated CVT technology to the industry such that it can be adopted by a Tier 1 or OEM. Furthermore, the work shows that both the research and development costs and subsequently the production material costs can be significantly reduced by creating a transmission technology that can broadly apply to both the on and off-highway markets.
Viewing 1 to 30 of 4752