Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 39456
Technical Paper
2014-09-15
Kai Chen
The synthetic paraffinic kerosine (SPK) produced via HEFAs is of great interest for civil aviation industry as it exhibits an excellent thermal oxidative stability with significantly lower particulate matter emission. However, due to its aromatic free characteristics, the widespread use of SPK is limited by its compatibility with non-metal materials such as fuel tank elastomers. In this research the compatibility of SPK and its blends with widely used aircraft fuel tank elastomers were systematically studied. Experimental results demonstrated the volume swellability of all selected materials showed a linear relationship with volume percentage of No.3 jet fuel in SPK blend. The increase of volume percentage of No.3 jet fuel in the SPK blend increased volume swellability for all materials except fluorosilicone gasket. The alkyl benzenes and naphthalenes in the blend acted as the hydrogen donors, which facilitated the formation of polymer matrix and led to the increase of the distance between polymer chains.
Technical Paper
2014-05-20
Y. Gene Liao, Molly O'Malley, Allen Quail
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Technical Paper
2014-05-09
John O. Manyala, Todd W. Fritz
Electro-hydraulic actuated systems are widely used in industrial applications due to high torque density, higher speeds and wide bandwidth operation. However, the complexities and the parametric uncertainties of the hydraulic actuated systems pose challenges in establishing analytical mathematical models. Unlike electro-mechanical and pneumatic systems, the nonlinear dynamics due to dead band, hysteresis, nonlinear pressure flow relations, leakages and friction affects the pressure sensitivity and flow gain by altering the system's transient response, which can introduce asymmetric oscillatory behavior and a lag in the system response. The parametric uncertainties make it imperative to have condition monitoring with in-built diagnostics capability. Timely faults detection and isolation can help mitigate catastrophic failures. This paper presents a signal-based fault diagnostic scheme for a gearbox hydraulic actuator leakage detection using the wavelet transform. The novelty of the work is the development of a high fidelity leakage fault detection as low as 0.128 lit/min.
Technical Paper
2014-05-09
David Lennström, Roger Johnsson, Anders Agren, Arne Nykänen
In the vehicle development process, targets are defined to fulfill customers' expectations on acoustic comfort. The interior complete vehicle acoustic targets can be cascaded down to system and component targets, e.g. insulation properties and source strengths. The acoustic transfer functions (ATFs) from components radiating airborne noise play a central role for the interior sound pressure levels. For hybrid vehicles fitted with an electric traction motor, the contribution of high frequency tonal components radiated from the motor housing needs to be controlled. The interior sound pressure due to an airborne motor order can be estimated by surface velocities and ATFs. This study addresses the ATFs measured from a large number of positions located around an electric rear axle drive (ERAD) and their influence on estimated interior noise. First, the magnitude variation between the individual ATFs and how it clearly can be visualized was presented. Displaying all ATFs in a color map revealed the magnitude at each geometrical location of the respective microphone.
Technical Paper
2014-05-09
Byeong wook Jeon, Sang-Hwan Kim
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway). After each event, participants were asked to complete the rating of the four descriptive terms as well as a comprehensive rating on the gear-shifting event.
Technical Paper
2014-04-15
Rakesh Kumar Maurya, Avinash Kumar Agarwal
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper. The collected particulate matter (PM) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals (marker of toxicity) using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES).
Technical Paper
2014-04-15
Amit Shrestha, Ziliang Zheng, Tamer Badawy, Naeim Henein, Peter Schihl
This paper presents a new approach for the development of six different JP-8 surrogates for application in diesel cycle simulation. The approach involves a step-wise formulation of 2-, 3-, and 4-component surrogates from a list of pure compounds which are selected based on several criteria. A MATLAB code is developed and is used in conjunction with the Ignition Quality Tester (IQT) and HYSYS software in order to formulate optimal surrogates. The first part of the results shows a comparison between the calculated and the measured DCNs for six surrogates. The differences in the properties such as the density, volatility, lower heating value, H/C ratio, molecular weight, and threshold sooting index of the surrogates and the JP-8 are also highlighted. This is followed by the evaluation of the surrogates with respect to the target JP-8 fuel. The evaluation is made in terms of ignition delays and the rate of heat release at three different IQT test temperatures. Finally, the test results are examined to evaluate the validity of the development approach and the potential use of the IQT in the development and validation of the JP-8 surrogates for application in diesel engines.
Technical Paper
2014-04-01
Robert Golimbioschi, Giampiero Mastinu, Luca Cordioli, Massimiliano Gobbi, Davide Tagliabue, Giorgio Previati, Francesco Braga
Abstract A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB. The contact between the wheels and the drums of the test rig were simulated by means of VIRTUAL.LAB.
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract The customer demand for all wheel drive (AWD) vehicles is increasing over the period of time which also requires NVH performance on par with front wheel drive vehicles. AWD vehicles are equipped with power transfer unit, propeller shaft and independent rear differential assembly to achieve their functional requirement. The additional drive train components in AWD vehicles may amplify torsional fluctuations in the drive line. Hence achieving the NVH performance of AWD vehicles on par with FWD vehicles without any major change in the existing design is a major challenge. In this work, an AWD vehicle with severe body vibration and booming noise is studied. The operational measurements are taken throughout the drive train on all sub-systems from engine to the rear part of the body in the problematic operating condition. An operational deflection shape analysis is conducted to visualize the vibration behavior of the drive train. The result of analysis shows that the dynamic torsional fluctuations of the drive shaft and rear drive module (RDM) vibration are the major contributors for the high levels of vibration and noise.
Technical Paper
2014-04-01
Youcai Liang, Gequn Shu, Hua Tian, Haiqiao Wei, Xingyu Liang, Mingru Zhao
Abstract Cogeneration system has become a valuable alternative approach for cascade waste heat recovery (WHR). In this paper, a novel electricity-cooling cogeneration system (ECCS) based on organic Rankine cycle-absorption refrigeration cycle (ORC-ARC) combined system is proposed to recover the waste heat of marine engine. ORC was adopted in the higher temperature cycle, in which alternatives D4, MDM and MM were selected as the working fluids. An ARC was adopted in the lower temperature cycle to recover the heat of the working fluid at the regenerator outlet in ORC. It aims to satisfy refrigeration requirement aboard ship, in which a binary solution of ammonia-water is used as the working pairs. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. The results show that the additional cooling capacity is up to 10.9 MW, and such an ECCS has improved the exergy efficiency by 51% compared to the basic ORC.
Technical Paper
2014-04-01
S.M. Ashrafur Rahman, Hassan Masjuki, Md. Kalam, M.J. Abedin, A. Sanjid, S. Imtenan, M.I. Arbab
Abstract Palm is an edible feedstock which is immensely popular in Malaysia as an alternative fuel which can substitute diesel fuel. However, use of Palm biodiesel in diesel engine have a negative effect on food security, thus, in this study authors used Mustard biodiesel, which has poor fuel properties, with Palm biodiesel to produce an optimum blend. This blend will have better fuel properties compared to Mustard biodiesel and will help eliminate dependency of Palm biodiesel. To ensure that optimized blend achieves better fuel properties MATLAB optimization tool was used to find out the optimum blend ratio. Linear relationship among the fuel properties was considered for MATLAB coding. The resultant optimum blend is represented by PM. Optimum blend revealed improved fuel properties compared to mustard biodiesel. Fuel consumption and exhaust emission of diesel engine operated by the produced optimized blend blends at high idling conditions with and without a turbocharger installed, were evaluated.
Technical Paper
2014-04-01
Aleksandar Hrnjak
Abstract Today, some vehicles include a regenerative-braking system such as the electrical motor-generator that converts the vehicle's kinetic energy into electrical energy to recharge one or more vehicle batteries. The idea is to use air flow to produce additional electrical energy in response to deceleration of the vehicle. With the Wind Power Generator System (WPGS) as a green system, a vehicle can produce extra energy, reduce gasoline usage, and reduce air pollution.
Technical Paper
2014-04-01
Harveer Singh Pali, Naveen Kumar, Chinmaya Mishra
Abstract Biodiesel from non-edible vegetable oils is of paramount significance in India due to insufficient edible oil production. The present work deals with relatively underutilized non-edible oil “Schleichera oleosa” or “Kusum”. The Kusum biodiesel (KB) was produced using a two stage esterification cum transesterification process as the free fatty acid content of the oil was high. Important physico-chemical properties were evaluated and they were found to conform with corresponding ASTM/EN standards. Various test fuels were prepared for the engine trial by blending 10%, 20%, 30% and 40% of KB in diesel by volume and were named as KB10, KB20, KB30 and KB40 respectively. The results showed that full load brake thermal efficiency was dropped by 3.8% to 17% with increase in KB composition in the test fuel. Diesel (D100) showed the maximum full load brake specific energy consumption followed by KB10, KB20, KB30 and KB40. Hydrocarbons and Carbon monoxide emissions along with smoke opacity at full load were reduced by 7-42 %.
Technical Paper
2014-04-01
Xuan Wang, Ge-Qun Shu, Hua Tian, Youcai Liang, Xiangxiang Wang
Abstract Currently, the thermal efficiency of vessel diesels only reaches 48∼51%, and the rest energy is rejected to the environment in forms of exhaust, cooling water, engine oil and so on. Meanwhile, energy is required when generating electricity and fresh water that are necessary for vessels. A system that combines the ORC thermal electric generation system with the single-effect evaporating desalination system simultaneously driven by waste heat of charge air is proposed. The research object was 12S90ME-C9.2 diesel engine produced by MAN corp., and a calculation model of the system is built by MATLAB. The variation of the output power, the thermal efficiency and the freshwater production with some operational parameters of the combined system are calculated and analyzed. On the other hand, under the condition of an assumed freshwater production 110.3t/d, the variation of the charge air temperature at the outlet of the desalination evaporator with some operational parameters of the system is studied in the paper.
Technical Paper
2014-04-01
Maddali Krishna, R. Chowdary
Abstract Vegetable oils are a promising substitute for diesel fuel because their properties are similar to those of diesel. They are renewable and can be easily produced. Rudolph Diesel, the inventor of the diesel engine that bears his name, experimented with fuels ranging from powdered coal to peanut oil. Investigations were carried out to evaluate the performance of a conventional diesel engine with different operating conditions [normal temperature and pre-heated temperature] of waste fried vegetable oil in crude form and biodiesel form with varied injection timing and injector opening pressure. Raw oil, containing higher amount of Free Fatty Acids (FFA) (greater than 10 wt%) collected from local restaurants of Hyderabad was converted to biodiesel in two-stage method so as to reduce FFA to 0.52% wt%. Performance parameters (brake thermal efficiency, exhaust gas temperature and coolant load), exhaust emissions (particulate matter (PM) and oxides of nitrogen (NOx)) were determined at various values of brake mean effective pressure of the engine, while combustion characteristics (peak pressure (PP), time of occurrence of peak pressure (TOPP) and maximum rate of pressure (MRPR)) were determined at full load operation of the engine fuelled with diesel, crude vegetable oil and biodiesel.
Technical Paper
2014-04-01
Hiroko Ohtani, Khaled Zreik, Edgar Steigerwald, Martin Knaffel, Robert Neumann, Gordon P. Small, Gregory Mordukhovich, Tracey E. King
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously. The Force Controlled Continuous Slip mode has demonstrated a correlation with anti-shudder performance in the field, whereas other tests revealed important properties such as torque capacity and shift qualities.
Technical Paper
2014-04-01
Devadatta Mukutmoni, Robert Powell, L.A.Raghu Mutnuri
Flow generated acoustic sources are of significant import for automotive applications since perception of noise is a critical customer satisfaction issue. High temperature acoustic sources known as thermo-acoustics such as those occurring inside an exhaust system of a vehicle, an important subset of acoustic sources, is the subject of the investigation. In this article, we study a Rijke tube configuration that consists of a vertical and hollow cylindrical tube open at both ends where sound is generated by buoyancy driven flow as a result of a heated wire gauze placed in the bottom half of the tube. This configuration captures the essence of the thermo-acoustic phenomena and was investigated both numerically and experimentally and good agreement was observed between the two.
Technical Paper
2014-04-01
Takao Suenaga, Takahiro Jo
Abstract The automotive industry is placing high importance on technologies that can reduce CO2, even in a highly fuel-efficient compact car. One major technology is Stop & Start(S&S) System, with a combined energy regeneration system. A key component of the system is a power supply storage device that has high-charge acceptance, light weight, and compact size. We believe a Lithium-ion (Li-ion) battery completely meets these requirements. For the battery, there are three key points: 1 Battery cell specification2 State Of Charge (SOC) detection method3 Temperature management for Li-ion battery. We have already proposed the battery cell and the SOC detection during SAE 2013, and now we are going to introduce “Temperature Management”. If the temperature of a Li-ion battery operates over 60 degrees Celsius, the battery could be severely damaged. Therefore, temperature management of the battery is very important. Conventionally, the temperature is managed by several thermistors and a cooling fan.
Technical Paper
2014-04-01
Andrew Haughton, Andy Dickinson
Abstract This paper describes the design and development steps taken to realise a functioning Turbo-generator Integrated Gas Energy Recovery System (TIGERS®). The main areas covered focus on simulation, machine design, control system development and validation. The mechanical design for this application is particularly challenging for a number of reasons. The turbine is capable of rotating the shaft at speeds greater than its critical rotating limit. Rolling element grease filled bearings are used to allow application flexibility; these have an operating temperature limit of 200°C. The exhaust gas can reach temperatures greater than 900°C in spark ignition applications, whereas the turbine upper functional limit is 850°C. The power electronics are integrally mounted in the machine and have a maximum thermal operating limit of 120°C. Considering that TIGERS is expected to harvest energy from the exhaust gas it is essential that it not only survives in this harsh environment, but it must also produce work with no adverse impact on vehicle performance or fuel efficiency.
Technical Paper
2014-04-01
Tae-il Yoo, Hanhee Park, Gubae Kang, Seongyeop Lim
Abstract Development of eco-friendly vehicles have risen in importance due to fossil fuel depletion and the strengthened globalized emission control regulatory requirements. A lot of automotive companies have already developed and launched various types of eco-friendly vehicles which include hybrid vehicles (HEVs) or electric vehicles (EVs) to reduce fuel consumption. To maximize fuel economy Hyundai-Kia Motor Company has introduced eco-friendly vehicles which have downsized or eliminated vibration damping components such as a torque converter. Comparing with Internal Combustion Engine(ICE) powered vehicles, one issue of the electric motor propulsion system with minimized vibration damping components is NVH (Noise, Vibration and Harshness). The NVH problem is caused by output torque fluctuation of the motor system, resulting in the degradation of ride comfort and drivability. Therefore, accomplishing both fuel economy and good NVH performance has become a significantly challenging task in eco-friendly vehicles.
Technical Paper
2014-04-01
Chao Chen, Martin Mohr, Franz Diwoky
Abstract This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper
2014-04-01
Shola Slough, Paul Goossens, Christine Schwarz, Thanh-Son Dao
Abstract As the demand for electric motors and drives grows, designers and manufacturers are faced with the challenge of understanding the effects of often non-deterministic duty cycles on their products. Too often, flaws in the design that can lead to failure only come to light when a prototype is built, or worse, after the product has been launched, leading to delays in product releases or costly recalls. To help mitigate these risks, designers are increasingly turning to simulation technologies that not only allow the engineer to implement the electric drives and motors but also all the various engineering factors, such as mechanical loads, vibrations and thermal effects, together in a single “virtual prototype” to get a clearer idea of how the whole system will behave over multiple duty cycles. Furthermore, if the resulting model can be fully parameterized it is then possible to perform sensitivity studies to determine which parameters will have the greatest influence on the overall behavior and therefore focus on them to understand effect of parameter variation through the lifetime of the product.
Technical Paper
2014-04-01
Ashish Vora, Haotian Wu, Chuang Wang, Yili Qian, Gregory Shaver, Vahid Motevalli, Peter Meckl, Oleg Wasynczuk, Haiyan Zhang
Abstract Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition. It describes the team's efforts towards developing a complete vehicle model of a Parallel-through-the road PHEV which can leverage SIL and HIL simulation platforms for control development.
Technical Paper
2014-04-01
Rashad Mustafa, Mirko Schulze, Peter Eilts, Ferit Küçükay
Abstract Hybrid electric vehicles (HEV's) are facing increasing challenges in optimizing the energy flow through a vehicle system, in order to improve both fuel economy and vehicle emissions. Energy management of HEV's is a difficult task due to the complexity of the total system in terms of electrical, mechanical and thermal behavior. In this paper, an advanced control strategy for a parallel hybrid vehicle is developed. Four main steps are presented, particularly to achieve a reduction in fuel consumption. The first step is the development of a highly complex HEV model, including dynamic and thermal behavior. Second, a heuristical control strategy is developed to determine the HEV modes and third, a State of Charge (SoC) leveling is developed with the interaction of a fuzzy logic controller. It is proposed to calculate the load point shifting of the Internal Combustion Engine (ICE) and the desired battery SoC. Fourth, novel multi-objective optimization techniques, such as a genetic algorithm, are used for the optimization of the fuzzy logic controller and the heuristical control strategy.
Technical Paper
2014-04-01
Trevor Crain, Joshua Wilke, Brendan Boyer, Trevor Fayer, Brian Fabien, Per Reinhall
Abstract The University of Washington Advanced Vehicle Works team has spent the last two years designing and integrating a Parallel Through The Road (PTTR) PHEV drive system into a stock Chevy Malibu as part of the EcoCAR 2 Advanced Vehicle Technology Competition. This paper presents the integration efforts performed throughout year 2 in an effort to produce a 65% “buyoff ready” prototype vehicle. EcoCAR2 challenges 16 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The architecture chosen by the team to address these goals is a PTTR PHEV which provides all-electric operation to displace petroleum usage, four wheel drive mode to improve utility performance for consumers, and an efficient charge-sustaining mode using 20% biodiesel (B20). The PTTR architecture is the lowest cost architecture to provide all of these benefits, and it does so without compromising the safety or performance of the platform.
Technical Paper
2014-04-01
Domenic Leo Barsotti, Sandra Boetcher
Abstract The present study discusses the benefits of using a phase change material (PCM) based cold plate for more efficient energy storage system (ESS) cooling in Plug-In Hybrid Electric Vehicles (PHEV). This paper numerically demonstrates the benefits that a PCM cold plate has over a more conventional aluminum cold plate design. These benefits include six times more passive cooling capacity and a 66% mass reduction. Further investigations into improving the system were conducted in an effort to maximize passive cooling.
Technical Paper
2014-04-01
Kevin L. Snyder, Jerry Ku
Abstract The Wayne State University (WSU) EcoCAR2 student team is investigating powertrain optimizations as a part of their participation in the EcoCAR2 design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. EcoCAR2 is the current three-year Department of Energy (DoE) Advanced Vehicle Technical Competition (AVTC) for 15 select university student teams competing on designing, building, and then optimizing their Plug-In Hybrid conversions of GM donated vehicles. WSU's powertrain design provides for approximately 56-64 km (35-40 miles) of electric driving before the Internal Combustion Engine (ICE) powertrain is needed. When the ICE is started, the ICE traditionally goes through a cold start with the engine, transmission, and final drive all at ambient temperature. The ICE powertrain components are most efficient when warmed up to their normal operating temperature, typically around 90-100 °C. There are now some conventional vehicles currently available that employ active warm-up to recover waste heat from hot engine coolant to more quickly heat up the transmission fluid for reduced parasitic losses to improve fuel economy by approximately 2%. [1] [2] The WSU student team is investigating the improvements to fuel consumption (FC) of the ICE powertrain operation in the team's plug-in hybrid through pre-heating the ICE powertrain components before the engine is started.
Technical Paper
2014-04-01
Amanda Hyde, Shawn Midlam-Mohler, Giorgio Rizzoni
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels. The model accounts for rotational dynamics and inertias of the torque generating components, gearboxes, and wheels.
Technical Paper
2014-04-01
Calvin C. Lee, Yuan Li, Guopeng Luo, Jiankun Yin, Liyuan Liu
Abstract Electrification of powertrain system for motored vehicles is one of the most important strategies being taken by many automakers to meet the stringent CO2 reduction required by laws in many countries, the marketplace-driven ownership cost reduction request, and the social and political energy sustainability needs. A hybrid electric vehicle (HEV) concept, having an electrified powertrain system comprising an internal combustion engine (ICE), a transmission with multiple discrete gear ratios, and a single electric motor with a coupling clutch is being implemented at FAW R&D to meet the strict Chinese Corporate Average Fuel Economy (CAFÉ) target. To specify the components of the parallel hybrid electric powertrain, a design of experiment (DOE) is conducted to calculate the sensitivities of the fuel efficiency to the specifications of key components, such as types of the ICE and number of gear ratios of the transmission, in different drive cycles. A prototype build based on the powertrain design concept is planned for dynamometer testing to confirm the fuel economy potential for a follow-up development program of the HEV.
Technical Paper
2014-04-01
Trista Schieffer, Mary Ann Jeffers, Shawn Hawkins, Adam Heisel, Cindy Leahy, Edward Rapa, Christopher Twarog
Abstract The General Motors (GM) Chevrolet Spark EV propulsion system builds upon the knowledge and experience gained from development of GM's Volt advanced propulsion system and the Chevy Spark Internal Combustion Engine (ICE) global vehicle architecture. The reuse of the modified Volt propulsion and charging systems and evolution of an existing vehicle architecture were key enablers to bring the Spark EV to market. The Spark vehicle architecture was converted from a traditional ICE to a functional Electric Vehicle (EV). Key elements of the EV include the first GM designed and built permanent magnet motor, a single speed coaxial transmission and liquid cooled power electronics and high voltage (HV) battery. The vehicle architecture modifications allowed space for a high voltage battery and propulsion system. The focus on improved aerodynamics, 12 volt loads, chassis and system efficiencies enable an efficient and well integrated package, while maintaining the available power to make this vehicle sporty and fun to drive.
Viewing 1 to 30 of 39456