Criteria

Text:
Display:

Results

Viewing 1 to 30 of 96
2015-04-14
Technical Paper
2015-01-0133
Clark Kinnaird
As many automotive functions migrate from purely mechanical to electrically-driven, the use of efficient brushless DC motors is becoming prevalent. This paper discusses the design of a BLDC controller, including the technical tradeoffs, hardware implementation, and testing results. Brushless DC motors are well suited to automotive applications due to their reliability and high efficiency. In applications such as oil pumps, water pumps, and turbo blowers where the motor lifetime and power dissipation are key parameters, these motors solve many design challenges. This design example examines the specific requirements for a compact solution for a water pump, but the design methodology and tradeoffs also apply to other motor control applications where efficient control of motor speed is needed. Like many applications, this design uses sensorless commutation algorithms, reducing cost and size.
2015-04-14
Technical Paper
2015-01-0247
Sonakshi Sharma, Vipul Kumar, Shubhranshu Garg, Sudhir Kashinath Gupte
There are variety of motors and generators/alternators being manufactured internationally, for variety of applications. It is a difficult task for the user to identify and select the type of motor /generator/alternator for a specific use, by the designer and ultimately the user is totally unaware of what is bought and why. There is a need to designate the motors and generators so that by interpretation of the identification nomenclature of the motor or generator it can be judged that what type it is, whether a series motor, an induction motor etc, in case of motors. This will eventually make it easy for the manufacturer, the buyer and the consumer to identify the motor or generator type. So a universally accepted and followed identification nomenclature is required to be developed which will henceforth make dealing in motors and generators simpler. It will prove to be useful during troubleshooting.
2015-04-14
Technical Paper
2015-01-1150
Emilio Larrodé, Alberto Fraile, Juan-Bautista Arroyo, Javier Luesma
This paper is part of the development of electric vehicle racing “Zytel-Zero” which was developed in the laboratories of the I3A (Aragón Institute for Engineering Research) by the research group in Sustainable Transport Systems (SMITS). It is a continuation of an earlier work in which a MACI (reciprocating internal combustion engine) powered vehicle was transformed for a high-performance autonomy electric vehicle. The main objective of the paper is the integration of all systems and components in this electric vehicle, designing and building those subsystems for correct operation, and commissioning and preparation of the control system. It has been working on control systems, especially the batteries and the several sensors of the vehicle itself. Thus, the specific objectives are to overhaul the system power supply vehicle, built into the core functions of the automated vehicle control system of the main variables and preserve all the security system during operation.
2015-04-14
Technical Paper
2015-01-1204
Ji zhang, Zechang Sun
Electromagnetic interference (EMI) is a common problem in power electronics systems. Pulse-width modulation (PWM) control of semiconductor devices in a power converter circuit creates discontinuity in voltage and current with rich harmonics over a broad frequency range, creating both conducted and radiated noise. The increase in switching speed enabled by new power semiconductor devices helps to reduce converter size and reduce switching losses, but further exacerbates the EMI problem. Complying with regulatory EMI emission limits requires the use of EMI filters in almost all power converter designs, and EMI filters are often the dominant elements for system volume,weight, and cost. Electromagnetic interference (EMI) filtering is a critical driver for volume and weight for many applications,particularly in electric vehicle and other mobile platforms.
2015-04-14
Technical Paper
2015-01-1205
Xiaohe Ma, Shuai Wang, King Jet Tseng, Rong Su, Viswanathan Vaiyapuri, Chandana Gajnayake, Amit Kumar Gupta, Sivakumar Nadarajan
The concept of More Electric Aircraft (MEA) demands a highly optimized airframe power system which is achieved by replacing pneumatic and hydraulic systems with energy efficient electrical systems. The More Electric Engine (MEE) is a key step towards MEA, where more electrical power will be drawn from gas turbine shaft using the conventional gear driven electrical machine, which is known to present inefficiencies and reliability issues. Embedding electrical machine directly at the engine shaft would eliminate the unreliable driveline and gear box along with potentially improving the reliability and efficiency of the whole system. However it presents significant challenges to electrical machine design considering competing requirements and aspirations of more electric aircrafts.
2015-04-14
Technical Paper
2015-01-1202
Weimin Zhang, Saeed Anwar, Daniel Costinett, Fred Wang
A boost converter is presented in this paper for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Power density of the boost converter is critical to achieving design goals of size reduction, performance increase, and minimization of cost. The feasibility of a hybrid switch using low power SiC MOSFET and high power Si IGBT is investigated to provide a cost-effective and failure-resistant method to employ the fast switching characteristics of SiC devices. Additionally, a power density-targeted design for the boost inductor is discussed, which allows optimization of weight and power loss across multiple candidate core materials. An improved powder core inductor design procedure is presented to avoid the iterative design procedure provided by the manufacture. The design procedure demonstrates that an ungapped powder core inductor with high flux density achieves smaller size than the gapped inductor using either amorphous or nanocrystalline material.
2015-04-14
Technical Paper
2015-01-1203
Subhashree RAJAGOPAL, Sebastien Desharnais PhD, Balamurugan Rathinam, Upendra Naithani
Eddy-current brakes are contactless magnetic brakes that allow decelerating a vehicle without friction and wear. Electromagnetic brakes are found in variety of applications. However they suffer from a decreasing torque at low and high speed. In this study a novel concept of permanent magnet eddy-current brake is proposed that maintains a flat braking torque profile over a broad speed range. The principle is analytically investigated and numerically validated through finite element simulations using MAXWELL. It is demonstrated that a useably flat braking torque profile can be achieved by altering the path of eddy-currents by magnetic field orientation, thereby, affecting the apparent rotor resistance. Keywords: Eddy-currents, eddy-current brakes, electromagnetic brakes, permanent magnet brakes, MAXWELL
2015-04-14
Technical Paper
2015-01-1208
Sinisa Jurkovic, Khwaja Rahman, Nitin Patel, Peter Savagian
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. Since its introduction in 2011, Chevrolet Volts have been driven over half a billion miles: 63% as electric vehicles and 37% in extended range driving. For 2016, GM has developed the secon-generation of the Volt vehicle and “Voltec” propulsion system. The second-generation of Volt electric propulsion system is built on two electric machines; both interior permanent magnet type. While hybrid-electric vehicles are gaining in popularity in hopes of addressing cleaner, energy sustainable technology in transportation, materials sustainability and rare earth dependence mitigation has not been the first priority in the hybrids available on the market today.
2015-04-14
Technical Paper
2015-01-1206
Manabu Yazaki
In recent years, the application of hybrid electric vehicle (HEV) technologies to a wide range of vehicles, from small to large vehicles and sedans to SUVs, has been expanding rapidly. Market demand for quiet drive is strong, and HEV systems are able to operate using motor drive alone, eliminating engine vibration and noise. To reduce torque fluctuation in order to reduce vibration and noise, distributed winding is used in the stators of the drive motors employed in many existing electric vehicles (EV) including HEV. However, because the coil ends of distributed windings are large, space for fitting is restricted. Concentrated winding is one method of reducing the size of the motor, because the coil ends can be made smaller. As winding resistance is lower in concentrated winding than in distributed winding copper loss is reduced, and the coils are effective under high-torque conditions.
2015-04-14
Technical Paper
2015-01-1207
Makarand Kane, Swanand Kulkarni
Hybrid and electric vehicles are being explored as future transportation alternatives to curb emissions and reduce dependence on fossil fuels. In small car segment, as far as hybridization is concerned, the space and safety constraint demands use of lower voltage viz. 48 V as compared to >100-volt-systems used for vehicles in other segments. 48 V systems also have advantage of reduced copper weight due to reduced current. As 48 V systems become prevalent and replace conventional 12 V systems, the auxiliary 12 V loads would necessitate implementation of several DC-DC converters. As this is redundant design, it is better to re-design at least some of the 12 V auxiliary systems to 48 V such as the radiator fan motor. However, the issues faced in the existing PMDC Motor with regard to efficiency and sizing has generated interest to investigate better alternatives for the motor.
2015-04-14
Technical Paper
2015-01-1200
Guiyuan Li, Changfu Zong
One of key problem in electric vehicle research is the performence of motor control, which has a direct impact on the vehicle performance. In this paper, a model of vector control of asynchronous motor for drive system in electric vehicles was established based on matlab/simulink, a fuzzy self-adaptive PID controller was designed and the implementation methods of feedback decoupling and voltage space vector pulse width modulation were given. Finally, a comparison between the system with fuzzy self-adaptive PID controller and the system with normal PID controller was carried out. The simulation results show that the space vector pulse width modulation (SVPWM) inverter for vector control induction motor drive system with fuzzy self-adaptive PID controller is effective to improve steady-state and dynamic performance of drive system.
2015-04-14
Technical Paper
2015-01-1201
Mohammad anwar, Monty Hayes, Anthony Tata, Mehrdad Teimorzadeh, Thomas Achatz
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. Since its introduction in 2011, Chevrolet Volts have been driven over half a billion miles: 63% as electric vehicles and 37% in extended range driving. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (E-REV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
2015-04-14
Technical Paper
2015-01-1209
Zhengyu Liu, Thomas Winter, Michael Schier
The capability of heat dissipation in electric machine has great influence on its output performance. Under high output rating the temperature in the machine can raise rapidly due to losses generated in components. To ensure the lifetime and prevent machine failure, power output must be limited as soon as the temperature reaches a certain critical level. The electric machine continuous power density is restricted by this thermal effect. To increase power density and reduce machine size, studies on machine cooling have been intensively conducted over the last decades. This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in the stator slots with oil flows. In this approach the machine stator slots are sealed to air gap after the coils are mounted.
2014-09-16
Technical Paper
2014-01-2117
Michael L. Zierolf, Thomas Brinson, Andrew Fleming
Abstract Recent emphasis on optimization of engine technologies with ancillary subsystems such as power and thermal management has created a need for integrated system modeling. These systems are coupled such that federated design methods may not lead to the most synergetic solution. Obtaining an optimal design is often contingent on developing an integrated model. Integrated models, however, can involve combining complex simulation platforms into a single system of systems, which can present many challenges. Model organization and configuration control become increasingly important when orchestrating various models into a single simulation. Additionally, it is important to understand such details as the interface between models and signal routing to ensure the integrated behavior is not contaminated or biased. This paper will present some key learnings for model integration to help alleviate some of the challenges with system-based modeling.
2014-09-16
Technical Paper
2014-01-2115
Brian C. Raczkowski, Benjamin Loop, Jason Wells, Eric Walters, Oleg Wasynczuk, Sean Field, Jason Gousy
Abstract Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
2014-09-16
Technical Paper
2014-01-2113
Fei Gao, Serhiy Bozhko, Greg Asher
Abstract Stability is a great concern for the Electrical Power System (EPS) in the More Electric Aircraft (MEA). It is known that tightly controlled power electronic converters and motor drives may behave as constant power loads (CPLs) which may produce oscillations and cause instability. The paper investigates the stability boundaries for dc multi-source EPS under different power sharing strategies. For each possible strategy the corresponding reduced-order models are derived. The impedance criterion is then applied to study the EPS stability margins and investigates how these margins are influenced by different parameters, such as main bus capacitance, generator/converter control dynamics, cabling arrangements etc. These results are also illustrated by the root contours of reduced-order EPS models. Theoretical results achieved in the paper are confirmed by the time-domain simulations.
2014-09-16
Technical Paper
2014-01-2111
Shweta Sanjeev, Goutham Selvaraj, Patrick Franks, Kaushik Rajashekara
Abstract The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
2014-09-16
Technical Paper
2014-01-2194
Ralf Cremer, Alfred Engler
Abstract The application of power electronics in aircraft is increasing in the latest aircraft developments. This contribution focuses on the recent advances of activities at Liebherr-Elektronik GmbH linked to power electronics: active power filter based on fast silicon carbide switches, open box design for unpressurized area, light weight housing, EMC management, partial discharge detection and mitigation, arc-fault detection and standardized innovative power cores with optimized sensors. These topics are derived from a roadmap based on beforehand identified key drivers. These key drivers will enable the future More Electric Aircraft (MEA) by focusing on weight, reliability and cost. New technologies as Silicon Carbide (SiC) and advanced integration will support this strategy.
2014-09-16
Technical Paper
2014-01-2181
Christopher Ian Hill, Chris Gerada, Paolo Giangrande, Serhiy Bozhko
Abstract This paper presents the initial development of a Modelica Library for Electro-Mechanical Actuator system analysis. At present two main system components are described, these are the Power Electronic Converter and Electric Machine, although further components will be added. These models provide the user with the ability to simulate Electric Machine and Power Electronic Converter systems including physical effects, losses and fault conditions. Established modelling programs such as Saber and MATLAB SimPowerSytems are often unable to provide all the aspects required to accurately simulate real systems in an easy to use, flexible manner. Therefore this paper shows how Modelica has been used to create versatile models able to simulate many practical aspects such as Power Electronic Converter losses and Power Electronic Converter faults, Electric Machine losses and Electric Machine faults.
2014-09-16
Technical Paper
2014-01-2176
Niloofar Rashidi Mehrabadi, Bo Wen, Rolando Burgos, Dushan Boroyevich, Chris Roy
Abstract The development of the concepts, terminology and methodology of verification and validation is based on practical issues, not the philosophy of science. Different communities have tried to improve the existing terminology to one which is more comprehensible in their own field of study. All definitions follow the same concept, but they have been defined in a way to be most applicable to a specific field of study. This paper proposes the Verification, Validation, and Uncertainty Quantification (VV&UQ) framework applicable to power electronic systems. Although the steps are similar to the VV&UQ frameworks' steps from other societies, this framework is more efficient as a result of the new arrangement of the steps which makes this procedure more comprehensible. This new arrangement gives this procedure the capability of improving the model in the most efficient way.
2014-09-16
Technical Paper
2014-01-2139
Serhiy Bozhko, Seang Shen Yeoh, Fei Gao, Tao Yang, Christopher Hill
Abstract The paper reports the control design for an aircraft electric starter-generator system based-on high-speed permanent magnet machine operated in a flux-weakening mode and controlled by an active front-end rectifier. The proposed system utilizes advances of modern power electronics allowing the use of novel machine types and the introduction of controlled power electronics into the main path of energy flow. The paper focuses on control design for such system and includes development of flux weakening control of high-speed permanent magnet machine and droop control of the system output dc-link current. The achieved analytical design results and the expected system performance are confirmed by time-domain simulations.
2014-09-16
Technical Paper
2014-01-2141
Christine Ross, Michael Armstrong, Mark Blackwelder, Catherine Jones, Patrick Norman, Steven Fletcher
Abstract The Turboelectric Distributed Propulsion (TeDP) concept uses gas turbine engines as prime movers for generators whose electrical power is used to drive motors and propulsors. For this NASA N3-X study, the motors, generators, and DC transmission lines are superconducting, and the power electronics and circuit breakers are cryogenic to maximize efficiency and increase power density of all associated components. Some of the protection challenges of a superconducting DC network are discussed such as low natural damping, superconducting and quenched states, and fast fault response time. For a given TeDP electrical system architecture with fixed power ratings, solid-state circuit breakers combined with superconducting fault-current limiters are examined with current-source control to limit and interrupt the fault current.
2014-09-16
Technical Paper
2014-01-2156
Arthur V. Radun
Abstract There is a continuing need to simulate power electronic circuits that include magnetic components. It is necessary to determine the interaction of the magnetic component with the rest of the power electronic system so that a dynamic circuit model of the magnetic components including material saturation and iron losses is required. Also, the magnetic component model must be valid when the magnetic component's excitation is not sinusoidal. A dynamic magnetic circuit model derived from Maxwell's equations along with useful theorems for building circuit models from the structure of the magnetic device is reviewed. The developed circuit models are general including magnetic saturation and iron losses. Simulation results for a DC/DC converter employing a conventional gapped inductor and a gapped coupled inductor are presented.
2014-09-16
Technical Paper
2014-01-2213
Noriko Morioka, Hidefumi Saito, Norio Takahashi, Manabu Seta, Hitoshi Oyori
Abstract Electrical power management is a key technology in the AEA (All-Electric Aircraft) system, which manages the supply and demand of the electrical power in the entire aircraft system. However, the AEA system requires more than electrical power management alone. Adequate thermal management is also required, because the heat generated by aircraft systems and components increases with progressive system electrification, despite limited heat-sink capability in the aircraft. Since heat dissipation from power electronics such as electric motors, motor controllers and rectifiers, which are widely introduced into the AEA, becomes a key issue, an efficient cooling system architecture should be considered along with the AEA system concept. The more-electric architecture for the aircraft has been developed; mainly targeting reduced fuel burn and CO2 emissions from the aircraft, as well as leveraging ease of maintenance with electric/electronic components.
2014-09-16
Journal Article
2014-01-2104
Jon Zumberge, John Mersch
Cost and performance requirements are driving military and commercial systems to highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop models and determine the uncertainty of those models so as to predict performance and stability. A process of model validation for a boost circuit based on acceptance sampling is presented here. The validation process described in this paper includes the steps of defining requirements, performing a screening and exploration of the system, completing a system and parameter identification, and finally executing a validation test. To minimize the cost of experimentation and simulation, design of experiments is used extensively to limit the amount of data taken without losing information.
2014-09-16
Journal Article
2014-01-2120
Jennifer C. Shaw, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract Radical new electrically propelled aircraft are being considered to meet strict future performance goals. One concept design proposed is a Turboelectric Distributed Propulsion (TeDP) aircraft that utilises a number of electrically driven propulsors. Such concepts place a new and significant reliance on an aircraft's electrical system for safe and efficient flight. Accordingly, in addition to providing certainty that supply reliability targets are being met, a contingency analysis, evaluating the probability of component failure within the electrical network and the impact of that failure upon the available thrust must also be undertaken for architecture designs. Solutions that meet specified thrust requirements at a minimum associated weight are desired as these will likely achieve the greatest performance against the proposed emissions targets.
2014-04-01
Technical Paper
2014-01-1910
Tim Fischer, Stefan Mueller
Abstract The domains of powertrain and brake systems are continuously merging due to the integration of electric drives and their ability to generate high acceleration and recuperative torque. However, high recuperative torque might lead to a locking motor and consequently cause a stability issue in electric and hybrid vehicles. This paper focuses on the special case of recuperation by coasting; i.e., the torque request is set after releasing the accelerator pedal. In this case the mechanical brake is not used. For off-highway vehicles this new feature in the inverter will suppress the slipping and locking up of the tires, without the need of additional external sensors. Slipping of the tires, e.g. when the tires lose grip, can occur due to excessive torque from the motor. In this case the motor torque exceeds the minimum feasible deceleration torque, given by road friction.
2014-04-01
Technical Paper
2014-01-1793
Chen Wang, Zhiguo Zhao, Tong Zhang, Xianjun Dai, Xiyue Yuan
Abstract Several types of power-split hybrid transmissions are outlined and the strengths and weaknesses of typical compound power-split prototype designs are summarized in this paper. Based on an modified Ravigneaux gear set, a novel compound power-split hybrid transmission with compact mechanical structure is presented, its dynamic and kinematic characteristics in equations and operating modes are described, and then equivalent lever diagrams are used to investigate the proposed compound power-split device. Control strategies in different operating modes are discussed with the simplified combined lever diagram, and a global optimization method is implemented to find the optimum operation point for the hybrid powertrain. To evaluate the fuel economy of a hybrid car equipped with this hybrid transmission, a forward powertrain simulation model is developed and real vehicle performance tests are conducted in the chassis dynamometer.
2014-04-01
Journal Article
2014-01-1928
Adam Fogarty, Kevin Oswald
In order to continue the effort of converting traditional internal combustion engine (ICE)-based vehicles into hybrid-electric vehicles (HEV), it is important to consider a variety of design architectures in which hybrid-electric operation is achieved. Such architectures include power split, parallel, and series. Of the previously stated architectures, the Purdue EcoMakers of the EcoCar 2 international Advanced Vehicle Technology Competition (AVTC) have chosen a parallel-through-the-road architecture for their 2013 Chevrolet Malibu provided by General Motors. From this, the Purdue EcoMaker vehicle design will be used as a case study for the design challenges and optimization strategies that are experienced when choosing this specific architecture for a light-duty passenger vehicle. This paper will focus on the design procedure and structural analysis of the custom rear suspension cradle created by the Purdue EcoMakers.
2014-04-01
Journal Article
2014-01-0797
Binghua Pan, Chee Keng Yeo
Power electronics products such as inverters and converters involve the use of Thermal Interface Materials (TIMs) between high power packages and a heat exchanger for thermal management. Conventional TIMs such as thermal greases, gels, solders and phase change materials (PCMs) face challenges to meet the need of these products to operate reliably at much higher temperatures. This has driven the development of new TIMs such as Transient Liquid Phase Sintering (TLPS) Conductive Adhesives. TLPS adhesives have been developed for many potential applications due to various advantages like lead free, flux-less and particularly their low temperature processability, which enables the use of heat sensitive components in the design. With all these motivations, a project was launched and completed to assess TLPS adhesives as a unique TIM for high temperature automotive applications due to its high bulk thermal conductivity and metallic joint formation at interfaces.
Viewing 1 to 30 of 96

Filter