Criteria

Text:
Content:
Display:

Results

Viewing 271 to 300 of 8689
CURRENT
2016-09-07
Standard
CPFD2_16TRANSCO
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-09-07
Standard
CPFD2_17FESCAPE
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-09-03
WIP Standard
J1390
Three levels of fan structural analysis are included in this practice: 1. Initial Structural Integrity 2. In-vehicle Testing 3. Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
CURRENT
2016-08-31
Standard
J2682_201608
This SAE standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leak proof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
2016-08-31
WIP Standard
ARP5758A
This document describes a recommended practice and procedure for the trending of parameters to maintain the test cell correlation status. Trending is performed to monitor test cells for changes that can affect engine performance or the data acquired from engine tests.
CURRENT
2016-08-31
Standard
ARP5435A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of APU (auxiliary power unit) engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. The baseline performance is generally determined at the original equipment manufacturer (OEM) designated test facility. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
CURRENT
2016-08-30
Standard
CPGM1_16SAVEXP
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-08-30
Standard
CPGM1_17BULACR
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-08-30
Standard
CPGM2_16SAVEXP
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-08-30
Standard
CPGM2_17BULACR
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-08-23
Standard
J2914_201608
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
2016-08-23
WIP Standard
J311
This SAE Information Report details some of the equipment and procedures used to measure critical characteristics of automatic transmission fluid (ATF) used in current automatic transmissions. It is intended to assist those concerned with the design of transmission components, and with the selection and marketing of automatic transmission fluids for the use in passenger car and light-duty truck automatic transmissions. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of automatic transmission fluids.
CURRENT
2016-08-19
Standard
AIR4170B
This document describes the initial development, evolution, and use of reticulated polyurethane foam as an explosion suppression material in fuel tanks and dry bays. It provides historical data, design practice guidelines, references, laboratory test data, and service data gained from past experience. The products discussed in this document may be referred to as "Safety Foam," "Reticulated Polyurethane Foam," "Baffle and Inerting Material," or "Electrostatic Suppression Material." These generic terms for the products discussed in this document are not meant to imply any safety warranty. Each individual design application should be thoroughly proof tested prior to production installation.
CURRENT
2016-08-18
Standard
CPGM2_17GMCCAN
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-08-18
Standard
CPGM1_17GMCCAN
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2016-08-17
WIP Standard
ARP4553B
This SAE Aerospace Recommended Practice (ARP) is intended to provide design and qualification requirements for self-displacing hydraulic accumulators.

These requirements are intended to be included in the Producrement Specification for the accumulator. Those requirements identified by the use of "shall" are considered to be essential requirements; those requirements identified by the use of "should" are considered to be optional requirements for inclusion in the Specificaiton at the discretion of the Purchaser.

In addition, test methods for production acceptance and qualification purposes are provided.

The accumulator is intended for use in military aerospace hydraulic systems with rated pressures of up to 8000 psi (55,158 kPa) and of the following types as specified in SAE AS 5440: Type I: -65 to +160 °F (-54 to +71 °C) fluid temperature; Type II: -65 to +275 °F (-54 to +135 °C) fluid temperature.

2016-08-17
WIP Standard
J1401

This SAE Standard specifies the performance tests and requirements for hydraulic brake hose assemblies used in the hydraulic braking system of a road vehicle. It also specifies the methods used for identification of the hose manufacturer.

This document applies to brake hose assemblies made of a hose fabricated from yarn and natural or synthetic elastomers and assembled with metal end fittings for use with nonpetroleum-base brake fluids as specified in SAE J1703, SAE J1704 and SAE J1705.

The nominal internal diameter of the brake hose shall fall within one of the following values:

    a. less than 4 mm (1/8 in or less)
    b. 4 to 5 mm (3/16 in)

2016-08-16
WIP Standard
AS4807D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications. Correct the “V” dimension for size 10.
2016-08-16
WIP Standard
AS4809D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5004D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5003D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4211E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4210E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4224D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4221D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4220D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5002D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications..
CURRENT
2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Viewing 271 to 300 of 8689

Filter