Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 8779
CURRENT
2017-07-19
Standard
AIR4174A
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d.
2017-07-18
WIP Standard
ARP4386D
This SAE Aerospace Recommended Practice (ARP) provides the technical terms and nomenclature, together with their definitions and abbreviations/acronyms that are used in aerospace fluid power, actuation and control systems. NOTE: ARP490 and ARP4493 are sources for definitions specifically for electrohydraulic servovalves.
2017-07-17
WIP Standard
AS7473C
This procurement specification covers bolts and screws made from carbon steels, high expansion steels, or corrosion and heat resistant steels of the type identified under the Unified Numbering System as follows: a. UNS K00802 - carbon steel (AMS 5061) b. UNS K91505 - high expansion steel (AMS 5624) c. UNS K91456 - high expansion steel (AMS 5625) d. UNS S32100 - corrosion and heat resistant steel (AMS 5645) e. UNS S34700 - corrosion and heat resistant steel (AMS 5646)
2017-07-17
WIP Standard
AS7474D
This specification covers bolts and screws made from a corrosion and heat resistant, martensitic iron base alloy of the type identified under the Unified Numbering System as UNS S17400. The following specification designations and their properties are covered: AS7474 140 ksi minimum ultimate tensile strength at room temperature 100 ksi stress corrosion test 72 ksi to 7.2 ksi tension-tension fatigue; AS7474-1 140 ksi minimum ultimate tensile strength at room temperature 100 ksi stress corrosion test 88 ksi minimum ultimate shear strength at room temperature.

Primarily for aerospace propulsion system applications where corrosion resistance and high strength in tension is required in temperatures not to exceed 600 °F.

CURRENT
2017-07-14
Standard
J1754/1_201707
This SAE Standard covers steel wire reinforced rubber hose assemblies using connectors specified in SAE J516 for use in hydraulic systems using petroleum based hydraulic fluids with maximum working pressures of 1.7 to 42 MPa. See Part 2, Table 7 for hose operating temperature ranges and identification codes. NOTE: Working pressure is defined as maximum system pressure.
2017-07-14
WIP Standard
J814

This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.

The values presented describe desirable basic properties. The results from laboratory tests are not conclusive, and it should be recognized that the final selection of satisfactory coolants can be proven only after a series of performance tests in vehicles.

The document describes in general the necessary maintenance procedures for all engine coolants to insure proper performance as well as special requirements for coolants for heavy-duty engines.

This document does not cover maintenance of engine cooling system component parts.

CURRENT
2017-07-12
Standard
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle.
2017-07-11
WIP Standard
J1608
Provide standard shift pattern guidelines for manual transmission shift controls in light, medium, and heavy trucks and buses.
2017-07-11
WIP Standard
J1731
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
2017-07-11
WIP Standard
J1806
Although not limited to, these clutches are normally used on trucks considered as Medium-Duty (Class 6 and 7), as well as Heavy-Duty (Class 8). This SAE Recommended Practice specifies clutch dimensions to promote standardization of single-plate and two-plate pull type clutches. This includes flat and pot type clutches sized from 350 (14) to 430 (16.9). (See Figures 1 to 6.)
2017-07-11
WIP Standard
J1134
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
2017-07-11
WIP Standard
J1915
This SAE Recommended Practice is prepared as a guideline to improve and maintain the quality of remanufactured automotive products. Installation of remanufactured or rebuilt products is often an economical way to repair a vehicle even though they may not fully be equivalent to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core are suitable for remanufacturing, so as to provide durable operation of the part as well as acceptable performance when installed in a vehicle. The remanufacturer should also carefully consider the safety aspects of the product and any recommendations of the original manufacturer related to remanufacturing or rebuilding their product.
CURRENT
2017-07-10
Standard
J3109_201707
The intention of this standard is to establish a framework to measure the efficiency of PWM HVAC Blower Controllers and Brushless DC Motor Controllers and define a usage based overall efficiency. This result can then be used by vehicle OEMs to demonstrate compliance towards requirements or benchmarks established by regulatory agencies.
CURRENT
2017-07-07
Standard
AS21905D
Scope unavailable.
CURRENT
2017-07-07
Standard
AS21910E
Scope unavailable.
CURRENT
2017-07-06
Standard
AIR6297
This document describes a method to calculate noise level adjustments at locations behind an airplane (described by an angular offset or directivity) at the start of takeoff roll (SOTR). This method is derived from empirical data from jet aircraft (circa 2004), most of which are configured with wing-mounted engines with high by-pass ratios (Lau, et al., 2012). Methods are also described which apply to modern turboprop aricraft.
2017-07-06
WIP Standard
AMS7464D
This specification covers premium quality bolts and screws made from a low-alloy, heat-resistant steel and having threads of UNJ (MIL-S-8879) form.
CURRENT
2017-07-06
Standard
AS21911D
SCOPE IS UNAVAILABLE.
CURRENT
2017-07-05
Standard
AS4688C
(A) Propose to replace .5625-16 UNJF with .5625-18 UNJF on Table 3 and other editorial changes (ex. replace ARP4296 with AS4296). (B) Propose revision to add conductive high purity aluminum coating per MIL-DTL-83488 for aluminum alloy fittings. The W code aluminum parts with new finish will be distinguished by new finish code V at the end of part number.
2017-06-30
WIP Standard
AIR7975
Generic overview of fuel system design and sizing, and guidelines for installation of various fuel system elements
2017-06-28
WIP Standard
J2907
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
CURRENT
2017-06-28
Standard
AS21906D
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-28
Standard
AS21912D
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-28
Standard
AS21909E
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-28
Standard
AS21914D
Scope unavailable.
2017-06-27
WIP Standard
J643
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a. Torque ratio versus speed ratio and output speed b. Input speed versus speed ratio and output speed c. Efficiency versus speed ratio and output speed d. Capacity factor versus speed ratio and output speed e. Input torque versus input speed
2017-06-27
WIP Standard
J646
Figures 1 to 5 illustrate in simplified form some of the more common planetary gear arrangements in order to establish applicable terminology. Gear ratio is the numerical ratio of input to output speed.
2017-06-27
WIP Standard
J139
To provide standard terminology and definitions with regard to ignition systems for spark-ignited internal combustion engines.
CURRENT
2017-06-26
Standard
J1342_201706
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
2017-06-26
WIP Standard
ARP6481
This SAE Aerospace Recommended Practice (ARP) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing on the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system. The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
Viewing 1 to 30 of 8779

Filter