Criteria

Display:

Results

Viewing 1 to 30 of 37594
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of inputs. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine model are developed. The models have been correlated heuristically using Simulink and Flowmaster, respectively. In order to extend the lumped mass engine model it also has been extended to Simulink model. In contrast to the complexity of the models the “Heuristic search” of input parameters has been found to be challenging and time consuming.
2017-03-28
Technical Paper
2017-01-1002
Daisuke Tanaka, Ryo Uchida, Toru Noda, Andreas Kolbeck, Sebastian Henkel, Yannis Hardalupas, Alexander Taylor, Allen Aradi
Reducing engine-out particulates is one of the main issues of direct injection gasoline engines and further efforts are still needed to comply with near-future emission regulations. However, engine-out particulate emission characteristics strongly depend on fuel properties associated with the combustion design and/or calibration, due to the complicated mechanisms of particulate formation, including both physical and chemical processes. For these reasons, the purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel.
2017-03-28
Technical Paper
2017-01-1034
Ben Zhao, Liangjun Hu, Abraham Engeda, Harold Sun
As the variable nozzle turbine (VNT) becomes an important element in engine fuel economy and engine performance, improvement of turbine efficiency over wide operation range is the main focus of the research efforts for both the academia and industry in the past decades. It is well known that in a VNT, the nozzle endwall clearance has big impact on the turbine efficiency, especially at small nozzle open positions. However the clearance at hub and shroud wall side may contribute differently to the turbine efficiency penalty. When total height of nozzle clearance is fixed, varying distribution of nozzle endwall clearance at hub and shroud sides is possible to generate different patterns of the clearance leakage flow that has different interaction with and impact on the main flow after exiting the clearances.
2017-03-28
Technical Paper
2017-01-1619
Charles Loucks
The introduction of floating point math in Embedded Application ECU’s has made the implementation of complex math functions less error prone but not error proof. This paper shall focus on raising awareness of the pitfalls that come from the use of the basic floating point arithmetic operations, that is, Divide, Multiply, Add and Subtract. Due to the known pitfalls inherent in these basic math operations, it is proposed that a standard library with common functions appropriate for Powertrain Embedded applications (but not limited to Powertrain) be identified. This paper shall explore what these common functions will look like for both standard C code as well as the equivalent versions in Matlab™ Simulink™ One lesson the author of this paper has learned in his career is that companies are slow to adopt common standardized approaches to the basic functionality discussed here (as well as other possible common functions not discussed here.)
2017-03-28
Journal Article
2017-01-0578
Pinaki Pal, Daniel Probst, Yuanjiang Pei, Yu Zhang, Michael Traver, David Cleary, Sibendu Som
Abstract Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
2017-03-28
Technical Paper
2017-01-0591
Andreas Thomasson, Xavier Llamas, Lars Eriksson
1 In modern turbocharged engines the power output is strongly connected to the turbocharger speed, through the flow characteristics of the turbocharger. Turbo speed is therefore an important state for the engine operation, but it is usually not measured or controlled directly. Still the control system must ensure that the turbo speed does not exceed its maximum allowed value to prevent damaging the turbocharger. Having access to a turbo speed signal, preferably by a cheap and reliable estimation instead of a sensor, could be beneficial for over speed protection and supervision of the turbocharger. This paper proposes a turbo speed observer that only utilizes the conditions around the compressor and a model for the compressor map. These conditions are either measured or can be more easily estimated from available sensors compared the conditions on the turbine side.
2017-03-28
Technical Paper
2017-01-0589
Shigeru Itabashi, Eiji Murase, Hiroya Tanaka, Masaaki Yamaguchi, Tomokazu Muraguchi
Abstract Toyota Motor Corporation has developed a new series of engines under the Toyota New Global Architecture (TNGA) design philosophy, which aims to satisfy customer requirements for both fun-to-drive dynamic performance and better fuel economy by adopting a high-speed combustion concept to improve thermal efficiency and specific power. This new engine series achieves a maximum engine thermal efficiency of 40%, a specific power ratio of 60 kW/l, and lower emissions by combining high-speed combustion and a high compression ratio with a high-tumble intake port, high-energy ignition coil, high-pressure multi-hole nozzle direct injector, and new electrical variable valve timing (VVT). The first engine in this series is a new 4-cylinder 2.5-liter gasoline naturally aspirated engine for use in passenger cars alongside a new TNGA 8-speed automatic transmission, which was introduced for minivans and SUVs in the U.S. market in 2016.
2017-03-28
Technical Paper
2017-01-0593
Ivan Arsie, Rocco Di Leo, Cesare Pianese, Matteo De Cesare
Abstract The development of more affordable sensors together with the enhancement of computation features in current Engine Management Systems (EMS), makes the in-cylinder pressure sensing a suitable methodology for the on-board engine control and diagnosis. Since the 1960’s the in-cylinder pressure signal was employed to investigate the combustion process of the internal combustion engines for research purposes. Currently, the sensors cost reduction in addition to the need to comply with the strict emissions legislation has promoted a large-scale diffusion on production engines equipment. The in-cylinder pressure signal offers the opportunity to estimate with high dynamic response almost all the variables of interest for an effective engine combustion control even in case of non-conventional combustion processes (e.g. PCCI, HCCI, LTC).
2017-03-28
Technical Paper
2017-01-0592
Robin Holmbom, Bohan Liang, Lars Eriksson
1 Turbocharging plays an important role in the downsizing of engines. Model-based approaches for boost control are going to increasing the necessity for controlling the wastegate flow more accurately. In today’s cars, the wastegate is usually only controlled with a duty cycle and without position feedback. Due to nonlinearities and varying disturbances a duty cycle does not correspond to a certain position. Currently the most frequently used feedback controller strategy is to use the boost pressure as the controller reference. This means that there is a large time constant from actuation command to effect in boost pressure, which can impair dynamic performance. In this paper, the performance of an electrically controlled vacuum-actuated waste-gate, subsequently referred to as vacuum wastegate, is compared to an electrical servo-controlled wastegate, also referred to as electric wastegate.
2017-03-28
Journal Article
2017-01-0586
Hayato Shirai, Hayato Nakada, Akio Matsunaga, Hiroyuki Tominaga
Abstract In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits.
2017-03-28
Journal Article
2017-01-0584
Haksu Kim, Jaewook Shin, Myoungho Sunwoo
Abstract With fuel efficiency becoming an increasingly critical aspect of internal combustion engine (ICE) vehicles, the necessity for research on efficient generation of electric energy has been growing. An energy management (EM) system controls the generation of electric energy using an alternator. This paper presents a strategy for the EM using a control mode switch (CMS) of the alternator for the (ICE) vehicles. This EM recovers the vehicle’s residual kinetic energy to improve the fuel efficiency. The residual kinetic energy occurs when a driver manipulates a vehicle to decelerate. The residual energy is commonly wasted as heat energy of the brake. In such circumstances, the wasted energy can be converted to electric energy by operating an alternator. This conversion can reduce additional fuel consumption. For extended application of the energy conversion, the future duration time of the residual power is exploited.
2017-03-28
Technical Paper
2017-01-0588
Adithya P Reddy Ranga, Gopichandra Surnilla, Joseph Thomas, Ethan Sanborn, Mark Linenberg
Abstract Dual fuel injection systems, like PFI+DI (port fuel injection + direct injection system) are being increasingly used in gasoline engine applications to increase the engine performance, fuel efficiency and reduce emissions. At a given engine operating condition, the air/fuel error is a function of the fraction of fuel injected by each of the fuel systems. If the fraction of fuel from each of the fuel system is changed at a given operating condition, the fuel system error will change as well making it challenging to learn the fuel system errors. This paper aims at describing the adaptive fueling control algorithm to estimate the fuel error contribution from each individual fuel system. Considering the fuel injection system slope errors to be the significant cause for air-fuel errors, a model structure was developed to calculate the fuel system adaptive correction factor as a function of changing fraction of fueling between the fuel systems.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Technical Paper
2017-01-0629
John Kuo, George Garfinkel
Abstract Thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) usually involves large models to accurately resolve small cooling channel details, and intensive computation to simulate drive-cycle transient solutions. This paper proposes a segregated method to divide the system into three parts: the cells, the cold plate and the interface between them. Each of the three parts can be separated and thermally characterized and then combined to predict the overall system thermal behavior for both steady-state and transient operating conditions. The method largely simplifies battery thermal analysis to overcome the limitations of using large 3D CFD models especially for pack level dynamic drive cycle simulations.
2017-03-28
Technical Paper
2017-01-0631
David C. Ogbuaku, Timothy Potter, James M. Boileau
Abstract The need to increase the fuel-efficiency of modern vehicles while lowering the emission footprint is a continuous driver in automotive design. This has given rise to the use of engines with smaller displacements and higher power outputs. Compared to past engine designs, this combination generates greater amounts of excess heat which must be removed to ensure the durability of the engine. This has resulted in an increase in the number and size of the heat exchangers required to adequately cool the engine. Further, the use of smaller, more aerodynamic front-end designs has reduced the area available in the engine compartment to mount the heat exchangers. This is an issue, since the reduced engine compartment space is increasingly incapable of supporting an enlarged rectangular radiator system.
2017-03-28
Technical Paper
2017-01-0632
Chen Yang, Haiyuan Cheng, Zizhu fan, Jiandong Yin, Yuan Shen
Abstract In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of engine systems, especially for combustion system.
2017-03-28
Technical Paper
2017-01-0633
Kurt Stuart, Terry Yan, James Mathias
Abstract In this paper, the air-standard cycle analysis is performed for a 5-stroke engine to obtain the indicated thermal efficiency and power output over a range of operating points and design characteristics, including engine RPM, compression ratio, overall expansion ratio, expansion cylinder clearance volume, and transfer port volume. The results are compared with those of a baseline 4-stroke engine. This analysis is accomplished by an air-standard thermodynamic model for both engines with heat release function with heat transfer and mass loss for both the combustion cylinder and the expansion cylinder. The results indicate increased thermal efficiency and power output over the baseline 4-stroke engine, depending on the engine RPM and overall expansion ratios.
2017-03-28
Technical Paper
2017-01-0634
Schoeffmann Wolfgang, Helfried Sorger, Siegfried Loesch, Wolfgang Unzeitig, Thomas Huettner, Alois Fuerhapter
Abstract In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
2017-03-28
Journal Article
2017-01-0635
Guy Babbitt, Jeff Rogers, Kristina Weyer, Drew Cohen, Stephen Charlton
Abstract This paper provides an overview of the analysis and design of the DigitalAir™ camless valve train including the architecture and design of the valve and head; the details of the electric valve actuator, and the flow characteristics of the valves and resulting charge motion in a motoring engine. This valve train is a completely new approach to fully variable valve actuation (FVVA), which allows almost unlimited continuously variable control of intake and exhaust valve timing and duration without the use of a camshaft. This valve train replaces conventional poppet valves with horizontally actuated valves located above the combustion deck. As the valves move, they open and close a number of slots connecting the cylinder with the intake and exhaust ports. The valve stroke necessary to provide the full flow area is approximately 25% of the stroke of the equivalent poppet valve, thus allowing direct electrical actuation with very low power consumption.
2017-03-28
Technical Paper
2017-01-0636
Vijai Shankar Bhavani Shankar, Nhut Lam, Arne Andersson, Bengt Johansson
Abstract The concept of double compression, and double expansion engine (DCEE) for improving the efficiency of piston reciprocating engines was introduced in SAE Paper 2015-01-1260. This engine configuration has separate high, and low pressure units thereby effectively reducing friction losses for high effective compression ratios. The presence of an additional expander stage also theoretically allows an extra degree of freedom to manipulate the combustion heat release rate so as to achieve better optimum between heat transfer, and friction losses. This paper presents a 1-D modeling study of the engine concept in GT-Power for assessing the sensitivity of engine losses to heat release rate. The simulations were constrained by limiting the maximum pressure to 300 bar.
2017-03-28
Technical Paper
2017-01-0637
Yan Zhang, Ziyu Wang, Honglin Bai, Chao Guo, Jinlong liu, Yufeng Li
Abstract Mechanical load and thermal load are the two main barriers limiting the engine power output of heavy duty (HD) diesel engines. Usually, the peak cylinder pressure could be reduced by retarding combustion phasing while introducing the drawback of higher thermal load and exhaust temperature. In this paper, Miller cycle with late intake valve closing was investigated at high speed high load condition (77 kW/L) on a single cylinder HD diesel engine. The results showed the simultaneous reduction of mechanical and thermal loads. In the meanwhile, higher boosting pressure was required to compensate the Miller loss of the intake charge during intake and compression process. The combustion temperature, cylinder pressure, exhaust temperature and NOx emission were reduced significantly with Miller cycle at the operating condition. Furthermore, the combustion process, smoke number and fuel consumption were analysed.
2017-03-28
Journal Article
2017-01-0639
Michael H. Shelby, Thomas G. Leone, Kevin D. Byrd, Frank K. Wong
Abstract Increasing compression ratio (CR) is one of the most fundamental ways to improve engine efficiency, but the CR of practical spark ignition engines is limited by knock and spark retard at high loads. A variable CR mechanism could improve efficiency by using higher CR at low loads, and lower CR (with less spark retard) at high loads. This paper quantifies the potential efficiency benefits of applying variable CR to a modern downsized, boosted gasoline engine. Load sweeps were conducted experimentally on a multi-cylinder gasoline turbocharged direct injection (GTDI) engine at several CRs. Experimental results were compared to efficiency versus CR correlations from the literature and were used to estimate the fuel economy benefits of 2-step and continuously variable CR concepts on several engine/vehicle combinations, for various drive cycles.
2017-03-28
Technical Paper
2017-01-0638
Neerav Abani, Nishit Nagar, Rodrigo Zermeno, Michael chiang, Isaac Thomas
Abstract Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
2017-03-28
Journal Article
2017-01-0641
Stephen J. Charlton, Charles E. Price, Jeff Rogers, James W.G. Turner, Roshan S. Wijetunge, William Anderson
Abstract The paper describes a completely new approach to fully variable valve actuation (FVVA), which allows almost unlimited continuously variable control of intake and exhaust valve opening and closing events, and duration without the use of a camshaft. DigitalAir replaces conventional poppet valves with horizontally actuated valves located directly above the combustion deck of the cylinder head, which open and close a number of slots connecting the cylinder with the intake and exhaust ports, Figure 1. The stroke of the valves to provide the full flow area is approximately 25% of the stroke of the equivalent poppet valve, thus allowing direct electrical actuation with very low power consumption. This design arrangement also avoids the risk of poppet valve to piston collision, or the need for cut-outs in the piston crown, since the valves do not open into the cylinder.
2017-03-28
Journal Article
2017-01-0642
Richard Osborne, Trevor Downes, Simon O'Brien, Ken Pendlebury, Mark Christie
Abstract The Magma engine concept is characterised by a high compression ratio, central injector combustion system employed in a downsized direct-injection gasoline engine. An advanced boosting system and Miller cycle intake-valve closing strategies are used to control combustion knock while maintaining specific performance. A key feature of the Magma concept is the use of high CR without compromise to mainstream full-load performance levels. This paper focuses on development of the Magma combustion system using a single-cylinder engine, including valve event, air motion and injection strategies. Key findings are that Early Intake Valve Closing (EIVC) is effective both in mitigating knock and improving fuel consumption. A Net Indicated Mean Effective Pressure (NIMEP) equivalent to 23.6 bar Brake Mean Effective Pressure (BMEP) on a multi-cylinder engine has been achieved with a geometric compression ratio of 13:1.
2017-03-28
Journal Article
2017-01-0643
Thompson Lanzanova, Macklini Dalla Nora, Hua Zhao
Abstract The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
2017-03-28
Journal Article
2017-01-0644
Michael Pontoppidan, Adm José baeta
Abstract In a torch ignition engine system the combustion starts in a prechamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main combustion chamber. The paper presents the layout of the prototype engine and the developed fuel injection system. It continues with a detailed description of the performance of the torch ignition engine running on a gasoline/ethanol blend for different mixture stratification levels as well as engine speeds and loads. Also detailed analyses of specific fuel consumption, thermal and combustion efficiency, specific emissions of CO2 and the main combustion parameters are carried out. A supplementary decrease in NOX emissions was obtained by use of Brazilian pure hydrated fuel. The paper concludes presenting the main results obtained in this work, which show significant increase of the torch ignition engine performance in comparison with the commercial baseline engine.
2017-03-28
Technical Paper
2017-01-0645
Jeremy Galpin, Thierry Colliou, Olivier Laget, Fabien Rabeau, Gaetano De Paola, Pascal Rahir
Abstract In spite of the increasingly stringent emission standards, the constant growth of road traffic contributes to climate change and induces detrimental effects on the environment. The European REWARD project (REal World Advanced Technologies foR Diesel Engines) aims to develop a new generation of Diesel engines complying with stricter post Euro 6 legislation and with lower CO2 emissions. Among the different technologies developed, a fuel-efficient two-stroke Diesel engine suited for C-segment passenger cars will be designed and experimentally evaluated. One major challenge for two-stroke engines is the achievement of an efficient scavenging. As the emptying of the in-cylinder burnt gases and the filling by fresh gases is performed at the same time, the challenge consists in removing as much burnt gases as possible while avoiding the by-pass of fresh air toward the exhaust line.
Viewing 1 to 30 of 37594

Filter