Criteria

Text:
Display:

Results

Viewing 241 to 270 of 44126
2017-09-04
Technical Paper
2017-24-0002
Adrian Irimescu, Silvana Di Iorio, Simona Merola, Paolo Sementa, Bianca Maria Vaglieco
Abstract Quasi-dimensional modeling is used on a wide scale in engine development, given its potential for saving time and resources compared to experimental investigations. Often it is preferred to more complex CFD codes that are much more computationally intensive. Accuracy is one major issue of quasi-dimensional simulations and for this reason sub-models are continuously developed for improving predictive capabilities. This study considers the use of equivalent fluid velocity and characteristic length scales for simulating the processes of fresh charge entrainment and oxidation behind the flame front. Rather than dividing combustion into three different phases (i.e. laminar kernel, turbulent flame propagation and oxidation near the walls), the concept of turbulent heat and mass transfer is imposed throughout the entire process.
2017-09-04
Technical Paper
2017-24-0013
Nicolas Perrot, Pascal Chesse, Rémi Dubouil, Guillaume Goumy
Abstract Today turbochargers are used by car manufacturers on Diesel engines and on an increasing number of gasoline engines, especially in the scope of downsizing. This component has to be well understood and modeled as simulation is widely used at every step of the development. Indeed development cost and time have to be reduced to fulfill both customers’ wishes and more stringent emissions standards. Current turbocharger simulation codes are mostly based on look-up tables (air mass flow and efficiency) given by manufacturers. This raises two points. Firstly, the characteristics are known only in the same conditions as manufacturers’ tests. Secondly, the turbine efficiency given by turbochargers manufacturers is the product of the isentropic efficiency and the turbocharger mechanical efficiency. This global efficiency is suitable for the calculation of the power transferred to the compressor.
2017-09-04
Technical Paper
2017-24-0015
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
2017-09-04
Technical Paper
2017-24-0016
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Abstract The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
2017-09-04
Technical Paper
2017-24-0017
Emanuele Servetto, Andrea Bianco, Gennaro Caputo, Giuseppe Lo Iacono
Abstract Large pressure pulsations and a non-uniform distribution of charge air temperature along the intake manifold were detected on a large-bore marine Dual-Fuel engine. These two phenomena were found to impact negatively on the knock resistance of individual cylinders, when the engine is operated in gas-mode. As it happens with marine gas engines, the cylinder most prone to knocking drives the engine tuning for all the others, thus reducing the overall fuel conversion efficiency. In order to effectively tackle this issue, a comprehensive study was carried out, which included both experimental testing and fluid-dynamics simulation. A detailed GT-POWER 1D engine model was built, representing the laboratory 8L (i.e. inline eight-cylinder) engine configuration. The model was extensively correlated against measurements at different speeds and loads and it proved capable of closely reproducing both the pressure fluctuations and the temperature gradient along the intake manifold.
2017-09-04
Technical Paper
2017-24-0019
Alexander Mason, Aaron W. Costall, John R. McDonald
Abstract Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
2017-09-04
Technical Paper
2017-24-0020
Michele Becciani, Alessandro Bianchini, Matteo Checcucci, Lorenzo Ferrari, Michele De Luca, Luca Marmorini, Andrea Arnone, Giovanni Ferrara
Abstract The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor.
2017-09-04
Technical Paper
2017-24-0003
Andreas Sidorow, Vincent Berger, Ghita Elouazzani
Abstract Gasoline engines have typically a waste gate actuator to control the boost pressure. The electrification of the vehicle and combustion engine components leads to new challenges of application of electric actuators in engine components, like turbochargers, which are faced with relatively high ambient temperatures. Another challenge is a simulation and prediction of the mechanical load on the actuator and kinematic components at different application scenarios, which can help to find the optimal solution which fulfills the durability, controllability, etc. targets. This paper deals with a physical dynamic model of an electric waste-gate actuator and kinematic components. The modeling includes a thermal, electrical and mechanical parts of the turbocharger control system and is validated on test-bench and engine measurements including pulsation effects.
2017-09-04
Technical Paper
2017-24-0005
Guillaume Goumy, Pascal Chesse, Nicolas Perrot, Rémi Dubouil
Abstract Downsizing has nowadays become the more widespread solution to achieve the quest for reaching the fuel consumption incentive. This size reduction goes with turbocharging in order to keep the engine power constant. To reduce the development costs and to meet the ever tightening regulations, car manufacturers rely more and more on computer simulations. Thus developing accurate and predictable turbocharger models functioning on a wide range of engine life cases became a major requirement in industrial projects. In the current models, compressors and turbines are represented by look-up tables, experimentally measured on a turbocharger test bench, at steady point and high inlet turbine temperature. This method results in limited maps : on the one hand the compressor surge line and on the other hand the flow resistance curve behind the compressor. Mounted on an engine, the turbocharger encounters a wider scale of functioning points.
2017-09-04
Technical Paper
2017-24-0006
Alejandro Aljure, Xavier Tauzia, Alain Maiboom
Abstract Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency, despite the difficulty of depollution and extra associated costs. They require more accessories to function properly, such as turbocharging and post-treatment systems. The most important pollutants emitted from diesel engines are NOx and particles (in conventional engines), being difficult to reduce and control because reducing one increases the other. Low temperature combustion (LTC) diesel engines are able to reduce both pollutants, but increase emissions of CO and HC. Besides HCCI and EGR systems, one method that could achieve LTC conditions is by using multiple injections (pilot/main, split injection, etc.). However, understanding multiple diesel injection is no easy task, so far done by trial and error and complex 3D CFD models, or too simplified by 0D models.
2017-09-04
Technical Paper
2017-24-0007
Joachim Beeckmann, Raik Hesse, Felix Bejot, Nan Xu, Heinz Pitsch
Abstract Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
Abstract To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
2017-09-04
Technical Paper
2017-24-0010
Federico Millo, Luciano Rolando, Alessandro Zanelli, Francesco Pulvirenti, Matteo Cucchi, Vincenzo Rossi
Abstract This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
2017-09-04
Technical Paper
2017-24-0011
Giulio Boccardo, Federico Millo, Andrea Piano, Luigi Arnone, Stefano Manelli, Cristian Capiluppi
Abstract Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
2017-09-04
Technical Paper
2017-24-0032
Gilles Decan, Stijn Broekaert, Tommaso Lucchini, Gianluca D'Errico, Jan Vierendeels, Sebastian Verhelst
Abstract The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
2017-09-04
Technical Paper
2017-24-0031
Imre Gergely Nagy, Andrea Matrisciano, Harry Lehtiniemi, Fabian Mauss, Andreas Schmid
Abstract Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup modelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup.
2017-09-04
Technical Paper
2017-24-0030
Vesselin Krassimirov Krastev, Luca Silvestri, Giacomo Falcucci, Gino Bella
Abstract A two-equation Zonal-DES (ZDES) approach has been recently proposed by the authors as a suitable hybrid URANS/LES turbulence modeling alternative for Internal Combustion Engine flows. This approach is conceptually simple, as it is all based on a single URANS-like framework and the user is only required to explicitly mark which parts of the domain will be simulated in URANS, DES or LES mode. The ZDES rationale was initially developed for external aerodynamics applications, where the flow is statistically steady and the transition between zones of different types usually happens in the URANS-to-DES or URANS-to-LES direction. The same “one-way” transition process has been found to be fairly efficient also in steady-state internal flows with engine-like characteristics, such as abrupt expansions or intake ports with fixed valve position.
2017-09-04
Technical Paper
2017-24-0029
Tommaso Lucchini, Gianluca D'Errico, Tarcisio Cerri, Angelo Onorati, Gilles Hardy
Abstract Computational fluid dynamics represents a useful tool to support the design and development of Heavy Duty Engines, making possible to test the effects of injection strategies and combustion chamber design for a wide range of operating conditions. Predictive models are required to ensure accurate estimations of heat release and the main pollutant emissions within a limited amount of time. For this reason, both detailed chemistry and turbulence chemistry interaction need to be included. In this work, the authors intend to apply combustion models based on tabulated kinetics for the prediction of Diesel combustion in Heavy Duty Engines. Four different approaches were considered: well-mixed model, presumed PDF, representative interactive flamelets and flamelet progress variable. Tabulated kinetics was also used for the estimation of NOx emissions.
2017-09-04
Technical Paper
2017-24-0036
S Krishna Addepalli, Om Prakash Saw, J M Mallikarjuna
Abstract Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
2017-09-04
Technical Paper
2017-24-0035
Giulio Cazzoli, Claudio Forte, Gian Marco Bianchi, Stefania Falfari, Sergio Negro
Abstract The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
2017-09-04
Technical Paper
2017-24-0034
Michele Battistoni, Carlo N. Grimaldi, Valentino Cruccolini, Gabriele Discepoli, Matteo De Cesare
Abstract Water injection in highly boosted gasoline direct injection (GDI) engines has become an attractive area over the last few years as a way of increasing efficiency, enhancing performance and reducing emissions. The technology and its effects are not new, but current gasoline engine trends for passenger vehicles have several motivations for adopting this technology today. Water injection enables higher compression ratios, optimal spark timing and elimination of fuel enrichment at high load, and possibly replacement of EGR. Physically, water reduces charge temperature by evaporation, dilutes combustion, and varies the specific heat ratio of the working fluid, with complex effects. Several of these mutually intertwined aspects are investigated in this paper through computational fluid dynamics (CFD) simulations, focusing on a turbo-charged GDI engine with port water injection (PWI). Different strategies for water injection timing, pressure and spray targeting are investigated.
2017-09-04
Technical Paper
2017-24-0024
Andrea Piano, Federico Millo, Davide Di Nunno, Alessandro Gallone
Abstract The need for achieving a fast warm up of the exhaust system has raised in the recent years a growing interest in the adoption of Variable Valve Actuation (VVA) technology for automotive diesel engines. As a matter of fact, different measures can be adopted through VVA to accelerate the warm up of the exhaust system, such as using hot internal Exhaust Gas Recirculation (iEGR) to heat the intake charge, especially at part load, or adopting early Exhaust Valve Opening (eEVO) timing during the expansion stroke, so to increase the exhaust gas temperature during blowdown. In this paper a simulation study is presented evaluating the impact of VVA on the exhaust temperature of a modern light duty 4-cylinder diesel engine, 1.6 liters, equipped with a Variable Geometry Turbine (VGT).
2017-09-04
Technical Paper
2017-24-0023
Karim Gharaibeh, Aaron W. Costall
Abstract Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
2017-09-04
Technical Paper
2017-24-0022
Alessio Dulbecco, Gregory Font
Abstract Diesel engine pollutant emissions legislation is becoming more and more stringent. New driving cycles, including increasingly severe transient engine operating conditions and low ambient-temperature conditions, extend considerably the engine operating domain to be optimized to attain the expected engine performance. Technological innovations, such as high pressure injection systems, Exhaust Gas Recirculation (EGR) loops and intake pressure boosting systems allow significant improvement of engine performance. Nevertheless, because of the high number of calibration parameters, combustion optimization becomes expensive in terms of resources. System simulation is a promising tool to perform virtual experiments and consequently to reduce costs, however models must account for relevant in-cylinder physics to be sensitive to the impact of technology on combustion and pollutant formation.
2017-09-04
Technical Paper
2017-24-0027
Nearchos Stylianidis, Ulugbek Azimov, Nobuyuki Kawahara, Eiji Tomita
Abstract A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
2017-09-04
Technical Paper
2017-24-0028
Adèle Poubeau, Stephane Jay, Anthony Robert, Edouard Nicoud, Christian Angelberger
Abstract This study presents a preliminary application of Large-Eddy Simulations (LES) of a speed transient performed on a motored single-cylinder engine. The numerical setup follows a methodology which has been validated and optimized for stabilized operating points in previous work, and adapted to run a speed transient of 31 cycles, from 1000 to 1800 rpm. Analysis of the results contributes to characterize the impact of the transient on the engine charge, tumble motion and velocity distribution. These simulations, which have never been performed in the past (to the best of our knowledge), represent a decisive step towards modeling and understanding transient in GDI engines, and particularly their impact on soot particle emissions in real driving conditions.
2017-09-04
Technical Paper
2017-24-0026
Davide Paredi, Tommaso Lucchini, Gianluca D'Errico, Angelo Onorati, Stefano Golini, Nicola Rapetto
Abstract The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
2017-09-04
Technical Paper
2017-24-0025
Francesco Sapio, Andrea Piano, Federico Millo, Francesco Concetto Pesce
Abstract Development trends in modern Common Rail Fuel Injection System (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection pattern through a constantly increasing number of injection events per engine cycle along with a modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection pattern optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual injection rate generator for the assessment of the corresponding engine outputs in terms of combustion characteristics such as burn rate, emission formation and combustion noise (CN). This paper is focused on the analysis of the effects of digitalization of pilot events in the injection pattern on Brake Specific Fuel Consumption (BSFC), CN and emissions for a EURO 6 passenger car 4-cylinder diesel engine.
2017-09-04
Technical Paper
2017-24-0049
Matteo De Cesare, Federico Covassin, Enrico Brugnoni, Luigi Paiano
Abstract The new driving cycles require a greater focus on a wider engine operative area and especially in transient conditions where a proper air path control is a challenging task for emission and drivability. In order to achieve this goal, turbocharger speed measurement can give several benefits during boost pressure transient and for over-speed prevention, allowing the adoption of a smaller turbocharger, that can further reduce turbo-lag, also enabling engine down-speeding. So far, the use of turbocharger speed sensor was considered expensive and rarely affordable in passenger car applications, while it is used on high performance engines with the aim of maximizing engine power and torque, mainly in steady state, eroding the safe-margin for turbocharger reliability. Thanks to the availability of a new cost effective turbocharger speed technology, based on acoustic sensing, turbocharger speed measurement has become affordably also for passengers car application.
2017-09-04
Technical Paper
2017-24-0050
Anjan Rao Puttige, Robin Hamberg, Paul Linschoten, Goutham Reddy, Andreas Cronhjort, Ola Stenlaas
Abstract Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Viewing 241 to 270 of 44126