Criteria

Text:
Display:

Results

Viewing 151 to 180 of 43710
2017-03-28
Technical Paper
2017-01-0405
Tianqi Lv, Xingxing Feng, Peijun Xu, Yunqing Zhang
Abstract Three constitutive models which capture the amplitude and frequency dependency of filled elastomers are implemented for the conventional engine mounts of automotive powertrain mounting system (PMS). Firstly, a multibody dynamic model of a light duty truck is proposed, which includes 6 degrees of freedom (DOFs) for the PMS. Secondly, Three constitutive models for filled elastomers are implemented for the engine mounts of the PMS, including: (1) Model 1: Kelvin-Voigt model; (2) Model 2: Fractional derivative Kelvin-Voigt model combined with Berg’s friction; (3) Model 3: Generalized elastic viscoelastic elastoplastic model. The nonlinear behaviors of dynamic stiffness and damping of the mounts are investigated. Thirdly, simulations of engine vibration dynamics are presented and compared with these models and the differences between common Kelvin-Voigt model and other constitutive models are observed and analyzed.
2017-03-28
Technical Paper
2017-01-0402
Zhigang Zhang, Shi Xiaohui, Ye Bin
Abstract Based on the formation mechanism of engaging force of clutch, the engagement was divided into four stages: idle stage, cushion spring stage, diaphragm spring stage and locked stage. The mechanism of transmitted torque in each stage was analyzed and the transmitted torque model of clutch was deduced. Multi-load step analysis method based on finite element was used to analyze the coupling load-deformation characteristics of diaphragm spring and cushion spring in engagement, and the change laws of engaging force, diaphragm spring force and release bearing force were achieved and their coupling interaction were studied. And then change of friction coefficient of clutch with oscillating temperature was measured on friction test rig, and effect of temperature on transmitted torque was further discussed. Finally, simulation results of transmitted torque were validated by the experiment. Results indicate that the transmitted torque in clutch engagement has a nonlinear characteristic.
2017-03-28
Technical Paper
2017-01-0235
Qiuming Gong, Jimmy Kapadia
Abstract Plug-in hybrid electric vehicles (PHEV) have an EV mode driving range which can cover a portion of customer daily driving. This EV mode range affects the refuel frequency substantially compared with conventional vehicle. For a conventional vehicle, daily driving pattern, tank size and fuel economy are the factors affecting the refuel frequency. While for a PHEV, EV range is another factor would affect the results substantially. Traditional method of label range can’t represent real world driving range between fill-ups for PHEV well. How to accurately predict the PHEV refuel distance taking into account real world customer driving patterns and PHEV parameters become critical for PHEV system design and optimization. This paper presents real world big customer data based PHEV refuel distance estimation modeling. The target is to estimate PHEV refuel distance given several specific parameters such as EV range, hybrid mode fuel economy, tank size etc.
2017-03-28
Technical Paper
2017-01-0620
Chandrakant Parmar, Sethuramalingam Tyagarajan, Sashikant Tiwari, Ravindra Thonge, S Arun Paul
Abstract The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
2017-03-28
Technical Paper
2017-01-0558
Lei Cui, Tianyou Wang, Kai Sun, Zhen Lu, Zhizhao Che, Yanzhe Sun
Abstract The scavenging process in two-stroke marine engines not only transports burnt gas out of the cylinder but also provides fresh air for the next cycle, thereby significantly affecting the engine performance. In order to enhance fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability directly determines the scavenging efficiency and even influences fuel-air mixing, combustion, and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in a steady-state scavenging flow test is conducted. A precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze the reason and the multi-scale characteristics of the precession phenomenon.
2017-03-28
Technical Paper
2017-01-0560
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Changle Li, Martin Tuner, Xue-Song Bai
Abstract Methanol as an alternative fuel in internal combustion engines has an advantage in decreasing emissions of greenhouse gases and soot. Hence, developing of a high performance internal combustion engine operating with methanol has attracted the attention in industry and academic research community. This paper presents a numerical study of methanol combustion at different start-of-injection (SOI) in a direct injection compression ignition (DICI) engine supported by experimental studies. The aim is to investigate the combustion behavior of methanol with single and double injection at close to top-dead-center (TDC) conditions. The experimental engine is a modified version of a heavy duty D13 Scania engine. URANS simulations are performed for various injection timings with delayed SOI towards TDC, aiming at analyzing the characteristics of partially premixed combustion (PPC).
2017-03-28
Technical Paper
2017-01-0559
Lucas Eder, Constantin Kiesling, Peter Priesching, Gerhard Pirker, Andreas Wimmer
Abstract Using natural gas as a fuel in internal combustion engines is a promising way to obtain efficient power generation with relatively low environmental impact. Dual fuel operation is especially interesting because it can combine the safety and reliability of the basic diesel concept with fuel flexibility. To deal with the greater number of degrees of freedom caused by the interaction of two fuels and combining different combustion regimes, it is imperative to use simulation methods in the development process to gain a better understanding of the combustion behavior. This paper presents current research into ignition and combustion of a premixed natural gas/air charge with a diesel pilot spray in a large bore diesel ignited gas engine with a focus on 3D-CFD simulation. Special attention was paid to injection and combustion. The highly transient behavior of the diesel injector especially at small injection quantities poses challenges to the numerical simulation of the spray.
2017-03-28
Technical Paper
2017-01-0554
Yu Li, Hongsheng Guo, Hailin Li
Abstract Computational fluid dynamics (CFD) model has been widely applied in internal combustion (IC) engine research. The integration of chemical kinetic model with CFD provides an opportunity for researchers to investigate the detailed chemical reactions for better understanding the combustion process of IC engines. However, the simulation using CFD has generally focused on the examination of primary parameters, such as temperature and species distributions. The detailed investigation on chemical reactions is limited. This paper presents the development of a post-processing tool capable of calculating the rate of production (ROP) of interested species with the known temperature, pressure, and concentration of each species in each cell simulated using CONVERGE-SAGE CFD model.
2017-03-28
Technical Paper
2017-01-0561
Federico Perini, Kan Zha, Stephen Busch, Rolf Reitz
Abstract In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
2017-03-28
Technical Paper
2017-01-0557
Masumeh Gholamisheeri, Bryce Thelen, Elisa Toulson
Abstract Three dimensional numerical simulation of the transient turbulent jet and ignition processes of a premixed methane-air mixture of a turbulent jet ignition (TJI) system is performed using Converge computational software. The prechamber initiated combustion enhancement technique that is utilized in a TJI system enables low temperature combustion by increasing the flame propagation rate and therefore decreasing the burn duration. Two important components of the TJI system are the prechamber where the spark plug and injectors are located and the nozzle which connects the prechamber to the main chamber. In order to model the turbulent jet of the TJI system, RANS k-ε and LES turbulent models and the SAGE chemistry solver with a reduced mechanism for methane are used.
2017-03-28
Technical Paper
2017-01-0568
Valentina Fraioli, Carlo Beatrice, Gabriele Di Blasio, Giacomo Belgiorno, Marianna Migliaccio
Abstract The adoption of gaseous fuels for Light Duty (LD) engines is considered a promising solution to efficiently reduce greenhouse gases emissions and diversify fuels supplies, while keeping pollutants production within the limits. In this respect, the Dual Fuel (DF) concept has already proven to be, generally speaking, a viable solution, industrially implemented for several applications in the Heavy-Duty (HD) engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields, including the release of high amounts of unburned species, possibility of engine knock, chance of thermal efficiency reduction. In this framework, numerical simulation can be a useful tool, not only to better understand specific characteristics of DF combustion, but also to explore specific geometrical modifications and engine calibrations capable to adapt current LD architectures to this concept.
2017-03-28
Technical Paper
2017-01-0563
Anand Karpatne, Douglas P. Breden, Laxminarayan Raja
Abstract The arc breakdown phase in automotive spark-plugs is a sub-microsecond event that precedes the main spark event. This phase is typically characterized by strong non-equilibrium plasma phenomena with high voltage and currents. The nature of the initial breakdown phase has strong implications for the successful spark formation and the electrode erosion/lifetime. There are evidently very few studies that seek to characterize this phase in detail. The goal of this work is to investigate this non-equilibrium plasma arc breakdown phase, using high-fidelity computational modeling. We perform studies using the VizGlow non-equilibrium plasma modeling tool. During the early breakdown phase, the plasma forms thin filamentary streamers that provide the initial conductive channel across the gap. Once the streamers bridge the gap, the plasma begins to transition to a thermal arc.
2017-03-28
Technical Paper
2017-01-0564
Prithwish Kundu, Muhsin Ameen, Umesh Unnikrishnan, Sibendu Som
Abstract Modeling unsteady turbulent flame development in lifted spray flames is important as a strong correlation exists between pollutant formation and the transient flame features such as auto-ignition, flame propagation and flame stabilization. Detailed chemistry mechanisms with large number of species are required to resolve the chemical kinetics accurately. These factors make high-fidelity simulation of engine combustion computationally expensive. In this work, a turbulent combustion model is proposed based on tabulation of flamelets. The aim is to develop a comprehensive combustion modeling approach incorporating detailed chemistry mechanisms, turbulence models and highly resolved grids leveraging the computational cost advantage of tabulation. A novel technique of implementing unsteady flamelet libraries without the use of progress variables is implemented for igniting sprays called Tabulated Flamelet Model (TFM).
2017-03-28
Technical Paper
2017-01-0566
Ramachandra Diwakar, Vicent Domenech-Llopis
Abstract With the ability of modern high pressure diesel injectors to deliver accurate, closely coupled multiple pulse injections, it is possible to minimize engine combustion noise without negative effect on exhaust emissions. Literature shows that, splitting the cycle heat release into several parts helps to lower peak heat release rate and combustion noise. The charge cooling caused by fuel vaporization can be effectively used to influence ignition delay and achieve lower noise, emissions and fuel consumption. With the traditional pilot-main injection scheme, researchers have shown that, the injection dwell time between the pilot and main is primarily responsible for noise reduction. The current objective is to analytically explore the fundamental physics behind the experimentally observed noise reduction phenomena with multiple injections. This computational study was conducted at a key part-load operation (2000RPM and 5Bar BMEP) with five injection pulses.
2017-03-28
Technical Paper
2017-01-0576
Minyue Wu, Yiqiang Pei, Jing Qin, Xiang Li, Jianwei Zhou, Zhang Song Zhan, Qi-yi Guo, Bin Liu, Tie Gang Hu
Abstract Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
2017-03-28
Technical Paper
2017-01-0577
Bersan Akkurt, Hayri Yigit Akargun, L. M. T. Somers, N. G. Deen, Ricardo Novella, Eduardo Javier Pérez-Sánchez
Abstract Advanced Computational Fluid Dynamics (CFD) modeling of reacting sprays provides access to information not available even applying the most advanced experimental techniques. This is particularly evident if the combustion model handles detailed chemical kinetic models efficiently to describe the fuel auto-ignition and oxidation processes. Complex chemistry also provides the temporal evolution of key species closely related to emissions formation, such as polycyclic aromatic hydrocarbons (PAHs) that are well-known as soot precursors. In this framework, present investigation focuses on the analysis of the so-called Spray-A combustion characteristics using two different flamelet-based combustion models. Both Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) predictions are combined to study not only the averaged spray characteristics, but also the relevance of different realizations in this particular problem.
2017-03-28
Technical Paper
2017-01-0572
Mianzhi Wang, Suya Gao, Chia-Fon Lee
Abstract In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine.
2017-03-28
Technical Paper
2017-01-0571
Tim Lackmann, Tommaso Lucchini, Gianluca D'Errico, Alan Kerstein, Michael Oevermann
Abstract Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
2017-03-28
Technical Paper
2017-01-0574
Ishan Verma, Ellen Meeks, Eric Bish, Martin Kuntz, Karthik Puduppakkam, Long Liang, Chitralkumar Naik
Abstract Emissions from Diesel engines have been a major concern for many years, particularly with regards to the impact of NOx and particulate matter on human health. Exhaust gas re-circulation (EGR) is a widely used method in diesel engines for controlling NOx production. While EGR rates can be varied to ensure engine performance and reduce NOx emissions, EGR also influences the ignition delay, reduces the peak combustion temperature and increases particulate emissions. Moreover, the injection timing directly affects NOx and particulate emissions under the broad and highly variable operating conditions. An effective CFD-based design tool for diesel engines must therefore include robust and accurate predictive capabilities for combustion and pollutant formation, to address the complex design tradeoffs. The objective of the present study is to evaluate CFD modeling of diesel engine combustion and emissions for various combinations of EGR rates and injection timings.
2017-03-28
Technical Paper
2017-01-0482
Cristiano Grings Herbert, Luiz Rogério De Andrade Lima, Cristiane Gonçalves
Abstract Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
2017-03-28
Technical Paper
2017-01-0549
Insuk Ko, Alessandro D'Adamo, Stefano Fontanesi, Kyoungdoug Min
Abstract In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
2017-03-28
Technical Paper
2017-01-0545
Adrian Irimescu, Silvana Di Iorio, Simona Silvia Merola, Paolo Sementa, Bianca Maria Vaglieco
Abstract Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
2017-03-28
Technical Paper
2017-01-0553
Lorenzo Sforza, Tommaso Lucchini, Angelo Onorati, Xiucheng Zhu, Seong-Young Lee
Abstract Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
2017-03-28
Technical Paper
2017-01-0547
Zvonimir Petranovic, Wilfried Edelbauer, Milan Vujanović, Peter Priesching, Reinhard Tatschl, Neven Duić
Abstract Commonly, the spray process in Direct Injection (DI) diesel engines is modeled with the Euler Lagrangian discrete droplet approach which has limited validity in the dense spray region, close to the injector nozzle hole exit. In the presented research, a new reactive spray modelling method has been developed and used within the 3D RANS CFD framework. The spray process was modelled with the Euler Eulerian multiphase approach, extended to the size-of-classes approach which ensures reliable interphase momentum transfer description. In this approach, both the gas and the discrete phase are considered as continuum, and divided into classes according to the ascending droplet diameter. The combustion process was modelled by taking into account chemical kinetics and by solving general gas phase reaction equations.
2017-03-28
Technical Paper
2017-01-0544
Philipp Mayr, Gerhard Pirker, Andreas Wimmer, Markus Krenn
Abstract It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
2017-03-28
Technical Paper
2017-01-0537
Murat Ates, Ronald D. Matthews, Matthew J. Hall
Abstract A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
2017-03-28
Technical Paper
2017-01-0539
Duc-Khanh Nguyen, Sebastian Verhelst
Abstract Methanol fueled spark ignition (SI) engines have the potential for very high efficiency using an advanced heat recovery system for fuel reforming. In order to allow simulation of such an engine system, several sub-models are needed. This paper reports the development of two laminar burning velocity correlations, corresponding to two reforming concepts, one in which the reformer uses water from an extra tank to produce hydrogen rich gas (syngas) and another that employs the water vapor in the exhaust gas recirculation (EGR) stream to produce reformed-EGR (R-EGR). This work uses a one-dimensional (1D) flame simulation tool with a comprehensive chemical kinetic mechanism to predict the laminar burning velocities of methanol/syngas blends and correlate it. The syngas is a mixture of H2/CO/CO2 with a CO selectivity of 6.5% to simulate the methanol steam reforming products over a Cu-Mn/Al catalyst.
2017-03-28
Technical Paper
2017-01-0534
Bojan S. Jander, Roland Baar
Abstract The knowledge of thermal behavior of combustion engines is extremely important e.g. to predict engine warm up or to calculate engine friction and finally to optimize fuel consumption. Typically, thermal engine behavior is modeled using look-up tables or semi-physical models to calculate the temperatures of structure, coolant and oil. Using look-up tables can result in inaccurate results due to interpolation and extrapolation; semi-physical modeling leads to high computation time. This work introduces a new kind of model to calculate thermal behavior of combustion engines using an artificial neural network (ANN) which is highly accurate and extremely fast. The neural network is a multi-layered feed-forward network; it is trained by data generated with a validated semi-physical model. Output data of the ANN-based model are calculated with nonlinear transformation of input data and weighting of these transformations.
2017-03-28
Technical Paper
2017-01-0529
Seamus Kane, Xuesong Li, Benjamin Wolk, Isaac Ekoto, William F. Northrop
Abstract Fuel reforming during a Negative Valve Overlap (NVO) period is an effective approach to control Low Temperature Gasoline Combustion (LTGC) ignition. Previous work has shown through experiments that primary reference fuels reform easily and produce several species that drastically affect ignition characteristics. However, our previous research has been unable to accurately predict measured reformate composition at the end of the NVO period using simple single-zone models. In this work, we use a stochastic reactor model (SRM) closed cycle engine simulation to predict reformate composition accounting for in-cylinder temperature and mixture stratification. The SRM model is less computationally intensive than CFD simulations while still allowing the use of large chemical mechanisms to predict intermediate species formation rates.
2017-03-28
Technical Paper
2017-01-0528
Eric Miller, Arnaud Konan, Adam Duran
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses a Monte Carlo method to generate parameter sets that are fed to a variant of the road load equation. The modeled road load is then compared to the measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters.
Viewing 151 to 180 of 43710