Criteria

Text:
Display:

Results

Viewing 31 to 60 of 43640
2017-03-28
Technical Paper
2017-01-1075
Wen Chen, Reda Adimi, Xingfu Chen, Todd Brewer, Ling Shi
Abstract In CAE analysis of cylinder bore distortion, valve seat distortion, valve guide-to-seat misalignment and cam bore misalignment, nodal displacements on the cylinder bore inner surface and on the gage lines of valve seats, valve guides and cam bores are typically output. Best fit cylinders, best fit circles and best fit lines are computed by utilizing the output displacements of the deformed configuration. Based on the information of the best fit geometry, distortions and misalignments are assessed. Some commercial and in-house software is available to compute the best fit cylinders, best fit circles and best fit lines. However, they suffer from the drawback that only one best-fit geometry can be computed at a time. Using this kind of software to assess distortions and misalignments of engine components would be tedious and prone to error, since data transfer as well as the intermediate computation has to be done by hand, and the process is not automatic.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Abstract In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
2017-03-28
Technical Paper
2017-01-1067
Xiaoguo Storm, Heikki J. Salminen, Reino Virrankoski, Seppo Niemi, Jari Hyvonen
Abstract With the tightening requirements on engine emission and performance, pressure based combustion controls are becoming common in medium speed large bore reciprocating internal combustion engines. The accuracy of the cylinder pressure data including the raw pressure value at its corresponding crank angle, has a vital impact on engine controllability. For instance, this work shows that a 1-bar pressure offset leads to a 0.6% variation in the total heat release (THR) while the 50% heat release crank angle (CA50) can be shifted by 1.5 degrees. Similarly, with a single degree error in the crank position, the indicated mean effective pressure (IMEP) gets a 1.8 bar error. Thus, in this work the typical errors for cylinder pressure measurement are reviewed and analyzed for large bore four stroke marine and power plant production engines. The main sources of error for pressure measurement are thermal shock and installation defects.
2017-03-28
Technical Paper
2017-01-1068
Jonathan Tigelaar, Krista Jaquet, David Cox, Albert Peter
Turbocharging is significantly changing design and control strategies for Diesel and gasoline engines. This paper will review new advances in the turbocharger speed measurement. Until recently, the highly accurate and fast turbocharger speed data, based on the physical speed sensor signal, has been mainly used to safely decrease conservative safety margins for turbocharger speed and surge limits. In addition to significantly increasing power and low end torque, new generation sensor technology is providing new opportunities to utilize turbocharger speed data.
2017-03-28
Technical Paper
2017-01-1070
Da Shao, Xu Sichuan, Aimin Du
Abstract The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
Abstract In order to study the single cavity and double cavity canister work performance, the L/D, as well as the similarities and differences among the diameter of the adsorption mouth, purge mouth and air mouth have been studied. At the same time, the work performance of ORVR canister and common canister is also studied. The results demonstrate that the similar of L/D, efficient work ability and efficient adsorption rate of the double cavity canister is better than the single cavity canister. The bigger of L/D, the stronger work ability of the canister. However, the excessive increase of the L/D is not conducive to the canister desorption, instead resulting in the increase of RARCP. The adsorption mouth diameter of common canister is generally smaller or similar to the purge mouth, while for ORVR canister the adsorption mouth diameter is bigger than the purge mouth and similar to air mouth.
2017-03-28
Journal Article
2017-01-1082
Mohammed Yusuf Ali, Thomas Sanders, Mikhail A. Ejakov, Reda Adimi, Alexander Boucke, Jochen Lang, Gunter Knoll
Abstract Strict requirements for fuel economy and emissions are the main drivers for recent automotive engine downsizing and an increase of boosting technologies. For high power density engines, among other design challenges, valve and guide interactions are very important. Undesirable contact interactions may lead to poor fuel economy, engine noise, valve stem to valve guide seizure, and in a severe case, engine failure. In this paper, the valve stem and valve guide contact behavior is investigated using computational models for the camshaft drive in push and pull directions under several misalignment conditions for an engine with roller finger follower (RFF) valvetrain and overhead cam configuration. An engine assembly analysis with the appropriate assembly and thermal boundary conditions are first carried out using the finite element solver ABAQUS.
2017-03-28
Technical Paper
2017-01-1083
Chawin Chantharasenawong
Abstract This study focuses on achieving a lower overall lap time at SAE Formula Student competition through a modification to the standard intake system. The lower lap time is achieved by widening the range of engine RPM which produces torque higher than 90% of the maximum value and lowering the engine RPM corresponding to the maximum torque. An intake system with ‘variable runner length’ is introduced to the 2015 racecar of KMUTT team. The values of intake lengths are determined from the wave equation with the goal of producing over 90% of the maximum torque of the baseline configuration over a range of engine RPM. Computer simulations are performed to determine the pressure at engine entry at various runner lengths. Finally, a prototype variable runner length intake system with linear motor actuators is constructed and installed on the racecar. Chassis dynamometer tests are performed to determine the engine torque for 3,000 – 10,500 RPM at all interested runner lengths.
2017-03-28
Technical Paper
2017-01-1085
Todd Brewer, Cagri Sever, Ruichen Jin, Michael Herr, Xingfu Chen, Reda Adimi
Abstract In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
2017-03-28
Technical Paper
2017-01-1077
Nicolas Arnault, Nicolas Batailley, Arnaud Maria, Laurent Bechu
Abstract PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied through circular economy, which is quite unusual in automotive industry yet. SOGEFI has used this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process.
2017-03-28
Technical Paper
2017-01-1078
Walid Ashraf, Sherif Khedr, Aya Diab, Hashim Elzaabalawy
Abstract A throttle valve is one of the main components of the intake system of a vehicle and is used to control the air flow rate into the combustion chamber at different engine speeds. Consequently, it has considerable effect on the engine power and performance especially at high engine speeds. The butterfly throttle valve is more common in commercial vehicles due to its simplicity. However, the butterfly throttle plate may affect the engine performance by incurring some pumping losses at high engine speeds even with the plate at wide open throttle (WOT) position. Hence it is proposed in this research work to replace and compare the performance of a spark ignition engine butterfly throttle valve to a newly designed barrel-shaped one with regards to the induced air mass flow rate. The main benefit of the proposed barrel-shaped throttle valve is the elimination of the flow restriction at WOT and high engine speeds.
2017-03-28
Technical Paper
2017-01-1080
Yanan Wei, Shuai Yang, Xiuyong Shi, Jiaqi Li, Xuewen Lu
Abstract This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Abstract Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-1116
Tomohiro Tasaka, Nobuyuki Oshima, Shinji Fujimoto, Yuya Kishi
Abstract An automatic transmission torque converter is usually used as a power transmission element, which performs the function of the torque matching and the torque amplification of the engine power output. This is referred to as the fluid performance of the torque converter, which is determined by its blade shape. Therefore, it is necessary to predict the fluid performance of the torque converter at the design stage to determine the blade shape, to which computational fluid dynamics (CFD) analysis can be applied. At present, time-averaged turbulence models such as k-ε (called Reynolds-averaged Navier–Stokes—RANS—model) are often used in such CFD analysis for industrial purposes, and are not limited to torque converters because of its appropriate calculation time. However, major traditional RANS models are less reliable for applications to complex three-dimensional flows in the torque-converter than those to simple pipe, channel and boundary layer flows.
2017-03-28
Technical Paper
2017-01-1117
Norman J. Bird, Alex Vinogradov
Abstract This paper discusses a new development in one way clutches (OWC), ratcheting OWC in torque converters (TC). While this has been tried before, and been successful in niche applications, it has not been introduced into mass production. Ford Motor Company has worked to develop a ratcheting OWC for use in TC. The efficiency of ratcheting OWC is better than friction type OWC. Ford Motor Company is working to implement ratcheting OWC into their torque converters, replacing friction type OWC.
2017-03-28
Technical Paper
2017-01-1115
Nandan A. Sawkar, Prashant Modi, Michael Fingerman
Abstract This study analyzes the flow dynamics of a fluid within an operating torque converter. Transient computational fluid dynamics (CFD) simulations have been carried out with prescribed torque converter motions using commercially available CFD software. The analysis computes torque converter excitation forces that predict flow induced excitations during converter operation. In this study, various torque converter designs are compared and assessed with the aim of limiting flow induced excitations.
2017-03-28
Technical Paper
2017-01-1121
Deb Bonnerjee, Djamel Bouzit, Javed Iqbal
Abstract Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
2017-03-28
Journal Article
2017-01-1120
Kenji Tsutsumi, Yoshitaka Miura, Yusuke Kageyama, Arata Miyauchi
Abstract A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
2017-03-28
Technical Paper
2017-01-1119
Fangwu Ma, Ying Zhao, Yongfeng Pu, Jiawei Wang
Abstract Gear transmission is widely used in mechanical transmission system and acts an important role in automotive industry. Manufacturing errors, assembly looseness, gear wear issues may result in gear backlash, noise and fatigue damage seriously affecting efficiency and service life of gear transmission. For gear transmission assembled, it is important to monitor the conditions of gear meshing and prevent the occurrence of dangerous situations. How to define the issues of gear tooth wear, misaligned bearing, gear eccentricity, backlash, and how to find faulty planetary gear sets and specific issues existing in gear transmission are meaningful and significant to ensure the quality of product. This paper starts from the analysis on gearing mechanism. Based on the behaviors represented by the issues, gear tooth wear, misaligned bearing, gear eccentricity and backlash are demonstrated and explained in detail.
2017-03-28
Technical Paper
2017-01-1108
Yulong Lei, Yao Fu, Ke Liu, Li Xingzhong, Zhenjie Liu, Yin Zhang, Xuanyi Fu
Abstract Selection of gearshift point plays an important role in the field of automatic transmission technology, which directly affects the vehicle dynamic and economic performance, etc. In order to designing optimal gearshift strategies for conventional passenger vehicles equipped with stepped automatic transmission, in this paper, the vehicle power demand was defined under different environment, different driving intention and different vehicle operating conditions. Dynamic programming (DP) method is used to solve the optimal static gearshift decision sequence based on the simplified model of powertrain system. The drivability is respected by imposing an inequality constraint on the power reserve limit and the fuel economy is the objective function. Considering the change of vehicle additional load and road slope, the gearshift strategy based on power reserve is proposed.
2017-03-28
Technical Paper
2017-01-1107
Christoph Andre Malonga Makosi, Stephan Rinderknecht, Ralf Binz, Frank Uphaus, Frank Kirschbaum
Abstract In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
2017-03-28
Technical Paper
2017-01-1105
Sergei Aliukov, Alexander Alyukov
Abstract The inertial continuously variable transmissions are mechanical transmissions that are based on the principle of inertia. These transmissions have a lot of advantages. Usually, the design of the inertial continuously variable transmissions consists of inertia pulsed mechanism with unbalanced inertial elements and two overrunning clutches. Dynamics of the transmissions is described by systems of substantial nonlinear differential equations. In general, precise methods of solution for such equations do not exist. Therefore, in practice, approximate analytical and numerical methods must be employed. The main analytical methods employ successive approximation, a small parameter, or power series expansion. Each approach has its advantages and disadvantages. Therefore, we need to compare them in order to select the best method for dynamic study of such kind of transmissions.
2017-03-28
Technical Paper
2017-01-1110
Muammer Yolga, Markus Bachinger
Abstract With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
2017-03-28
Journal Article
2017-01-1111
Marcello Canova, Cristian Rostiti, Luca D'Avico, Stephanie Stockar, Gang Chen, Michael Prucka, Hussein Dourra
Abstract To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
2017-03-28
Technical Paper
2017-01-0890
Yoichiro Nakamura, Masahisa Horikoshi, Yasunori TAKEI, Takahiro Onishi, Yasuhiro Murakami, Chip Hewette
Abstract Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
2017-03-28
Journal Article
2017-01-0891
Gregory Hunt
Abstract Modern automotive transmissions contain copper and copper alloys in the form of washers, bushings, brazes and electrical components. Corrosion that occurs with any of these components especially with electrical contacts can result in a malfunction of the vehicle control systems and loss of vehicle drivability. The compatibility of transmission lubricants with copper and copper alloys is an increasingly important consideration in the design of new additive technology. Traditional methods for monitoring corrosion processes and mechanisms in real time can be both time consuming and challenging to interpret, especially when evaluations at multiple temperatures are required. This work challenges some of the industry-held beliefs around lubricant additive corrosion processes, especially at elevated temperature (>130 °C).
2017-03-28
Technical Paper
2017-01-0903
Sarp Mamikoglu, Jelena Andric, Petter Dahlander
Abstract Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
2017-03-28
Technical Paper
2017-01-0907
Timothy Johnson, Ameya Joshi
Abstract This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
2017-03-28
Technical Paper
2017-01-0898
Jongwon Lee, Sedoo Oh, Kyung Sub Joo, Seyoung Yi, Kyoung-Pyo Ha, Seongbaek Joo
Abstract The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
2017-03-28
Journal Article
2017-01-0899
Paul Dekraker, John Kargul, Andrew Moskalik, Kevin Newman, Mark Doorlag, Daniel Barba
Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Viewing 31 to 60 of 43640