Criteria

Text:
Display:

Results

Viewing 1 to 30 of 43903
2017-10-08
Technical Paper
2017-01-2202
Shiyou Yang
This work presents an application of two sub-models relative to chemical-kinetics-based turbulent pre-mixed combustion modeling approach on the simulation of burn rate and emissions of spark ignition engines. In present paper, the justification of turbulent pre-mixed combustion modeling directly based on chemical kinetics plus a turbulence model is given briefly. Two sub-models relative to this kind of pre-mixed combustion modeling approach are described generally, including a practical PRF (primary reference fuel) chemical kinetics mechanism which can correctly capture the laminar flame speed under a wide range of Ford SI (spark ignition) engines/operating conditions, and an advanced spark plug ignition model which has been developed by Ford recently.
2017-10-08
Technical Paper
2017-01-2325
Midhat Talibi, Paul Hellier, Nicos Ladommatos
The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
2017-10-08
Technical Paper
2017-01-2224
Paul Freeland
REVISED ABASTRACT 4/7/2017 The challenges of maintaining continuous improvements in air quality, manage the earth’s energy resources, and to control atmospheric concentrations of greenhouse gasses, whilst supplying ever increasing global sales volumes mean that ever more detailed understanding and optimisation of powertrain systems is required. Downsizing, electrification and traffic flow management all have very important parts to play in achieving these goals, but can still only modify the outputs of the basic propulsion units, and methods to improve the efficiency, cleanliness and flexibility of powertrains remains a vital development requirement. The paper explores the fuel consumption benefits available from de-throttling technologies that can help to bring gasoline engine efficiency on a par with that of diesel engines.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin wang, Xiongcai zou, Zhiming Zhang, Wenlong zhang, Shemin zhang, Tao Chen, Yuhuang cao, Yuanda Chen
In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is in adopted in one three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. The global model include cylinder head, block, turbocharger, and catalyst components.
2017-10-08
Technical Paper
2017-01-2429
Felix Leach, Martin Davy, Adam Weall, Brian Cooper
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
2017-10-08
Technical Paper
2017-01-2446
Pengchuan Wang, Nikolaos Katopodes, Yuji Fujii
Wet clutch packs are the key component for gear shifting in the step-ratio automatic transmission system. They are coupled or de-coupled to alter gear ratios based on driver’s demand and vehicle operating conditions. The frictional interfaces between clutch plates are lubricated with automatic transmission fluid (ATF) for both thermal and friction management. In a 10-speed transmission, there may be as many as 6 clutch packs. Under any driving conditions, 2 to 3 clutch packs are typically open, shearing ATF and contributing to energy loss. There is an opportunity to improve fuel economy by reducing this viscous drag. One main factor that directly affects clutch drag is the clearance between rotating plates. The axial position of clutch plates changes continually at every instance. It is empirically known that not only the total clearance, but also its distribution between the plates affects the viscous drag.
2017-10-08
Technical Paper
2017-01-2442
Bingqing Xiao, Wei Wu, Jibin Hu, Shihua Yuan, Chenhui Hu
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in vehicle transmission system. A heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area. The outer radius temperature is higher than the inner radius temperature at the contact face.
2017-10-08
Technical Paper
2017-01-2201
Zhongye Cao, Tianyou Wang, Kai Sun, Lei Cui
In uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. It is integral to the subsequent combustion process, thereby affecting the engine's fuel economy, power output and emission performance. In this paper, a complete working cycle of 6S35ME engine of MAN Diesel&Turbo was simulated by using the CFD software CONVERGE with full engine geometry including intake and exhaust ports. The simulation based on RANS and standard k-epsilon model was in good agreement with experiment. Based on the above calibrated model, the influence of exhaust valve closing (EVC) timing and swirl ratio on the scavenging process were investigated.
2017-10-08
Technical Paper
2017-01-2268
Zhanming Chen, Long Wang, Tiancong Zhang, Qimeng Duan, Ke Zeng
Liquefied natural gas (LNG) fuelled engines have been widely equipped on heavy duty vehicles both for fuel-economic and environmental protection concerns, however, they always suffer from deteriorated combustion performance and flame stability due to relatively low burning velocity of methane for lean mixture. In this paper, experimental study was conducted on a turbo-charged, spark-ignition, lean-burn LNG engine with methanol port injection. The combustion characteristics such as cylinder pressure traces, heat release rate (HRR), mass fraction burned (MFB), ignition delay, centroid of heat release, position of CA50 and CA90, as well as cyclic variation of peak pressure were analysed under light load (BMEP=0.3876MPa) with different methanol substitution rates (MSR=0%, 5.2%, 10.2%, 17.2%). The experimental results show that combustion phase advanced with increment of MSR due to faster burning velocity of methanol.
2017-10-08
Technical Paper
2017-01-2257
Linjun Yu, Yanfei Li, Bowen Li, Hao-ye Liu, Zhi Wang, Xin He, Shi-jin Shuai
This study compares the combustion and emission performance of gasoline Homogeneous Charge Compression Ignition (HCCI) and Multiple Premixed Compression Ignition (MPCI) in a single-cylinder, intake-boosting and water-cooling diesel engine with a compression ratio of 16.7. The test fuel was commercial gasoline in China with RON of 92, and intake pressure varied from 0.16 to 0.21 MPa, while Indicated Mean Effective Pressure (IMEP) was fixed at 1.0 MPa. Both the knock limit and misfire limit of gasoline HCCI were studied. The results showed that Low Temperature Heat Release (LTHR) was observed before High Temperature Heat Release (HTHR) in gasoline HCCI, and the LTHR accounted for less than 10 percent of total heat release. The knock limit and misfire limit of gasoline HCCI coincided when the intake pressure decreased to 0.16 MPa. Increasing the intake pressure helped to promote the Indicated Thermal Efficiency (ITE) for both gasoline HCCI and MPCI.
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2256
Muhammad Umer Waqas, Bengt Johansson, Jean-Baptiste MASURIER, Kai Morganti
Future internal combustion engines demand higher efficiency, progression towards is limited by antiknock quality of present fuels and energy economics in octane enhancement. A possible solution is Octane-on-Demand, that uses a combination of high and low octane fuels in separated tanks to generate fuels of the required octane rating according to demand. Methanol, a RON 109 fuel was selected as the high octane fuel and five low octane fuels were used as base fuel. These were FACE (Fuels for Advanced Combustion Engines) gasolines, more specifically FACE I, J and A and their primary reference fuels (iso-octane/n-heptane). Experiments were conducted with a modified Cooperative Fuel Research (CFR) engine. For SI combustion mode the CFR operated at RON and MON conditions. The engine i.e. also operated in HCCI mode to get the auto ignition properties at lean conditions (λ=3).
2017-10-08
Technical Paper
2017-01-2197
Vignesh Pandian Muthuramalingam, Anders Karlsson
Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
2017-10-08
Technical Paper
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-09-23
Technical Paper
2017-01-1964
Xiangkun He, Xuewu Ji, Kaiming Yang, Yulong Liu, Jian WU, Yahui Liu
Highway traffic safety has been the most serious problem in current society, statistics show that 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technology to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
2017-09-19
Technical Paper
2017-01-2045
Shivam Mishra, Sanjay Y
Gas turbine air-film blade cooling is widely used aero-derivative gas turbine blade cooling technique. The present paper reviews previously developed air-film blade cooling models. The article further proposes a new blade cooling model for estimating blade coolant mass fraction which takes into account the effect of radiative heat transfer from hot flue gases to aero-derivative gas turbine blade surface. Various possibilities to achieve enhanced performance from aero-derivative gas turbine have been enumerated namely effect of advanced design philosophies, thermal barrier coatings, advancement in blade material. Also adoption of advanced design philosophies such as 3-D CFD would lead to improved component design. Further use of advanced blade material specifically for gas turbine blade application including single-crystal blade, directionally solidified blade material being nickel-chrome-molybdenum alloys may be explored.
2017-09-19
Technical Paper
2017-01-2138
Arun Zore, Shriraj Kale, Sangram Jadhav
The experimental study has been carried out on Compression Ignition (CI) Engine using Simarouba Methyl Ester as an alternative fuel for optimization of Performance (Specific Fuel Consumption) and Emissions (Carbon Monoxide, Oxide of Nitrogen) characteristics using Taguchi and Multiple Regression analysis. This study includes combine effect of four input parameters such as; percentage blend (FF), compression ratio (CR), fuel injection pressure (FIP) and injection timing (IT); (before TDC) for controlling the output variables such as specific fuel consumption (SFC), carbon monoxide (CO) and oxides of nitrogen (NOx). Four levels were selected to each input parameter and Taguchi’s L16 orthogonal array has been applied in present study to reduce the number of experiments. The data obtained from the experiments has been analysed using Taguchi method and Multiple regression analysis to obtain the optimum values for four input parameters.
2017-09-19
Technical Paper
2017-01-2044
Mithilesh Kumar Sahu, Tushar Choudhary, Sanjay Y
Aircraft engines powering propulsion of the aircraft is the key component of the system. In aircraft industry it is desirable that an aircraft engines should supply high speeds (for military fighters) with low maintenance (for civil airplanes). In this regard an integration of gas turbine engines with traditional propeller has been introduced and termed as turboprop engine. In present work, a gas turbine with cooled blading has been proposed to be the turboprop engine which has been exergoeconomically analysed to assess the performance and economics related to the proposed turboprop engine. Exergoeconomic analysis is a tool which combines thermodynamic analysis and economic principles to provide information that is helpful to predict thermodynamic performance and total cost of the engine (thermal system). The methodology includes energy, exergy and cost balance equations for component-wise modelling of whole system.
2017-09-19
Technical Paper
2017-01-2030
Benjamin Cheong, Patrick Wheeler, Pericle Zanchetta, Michael Galea
In effort to reduce environmental impact of the aerospace industry, More Electric Aircraft (MEA) concepts with electrical systems for fuel pumping, wing ice protection, environmental control systems and aircraft actuation are becoming more and more widely researched. The replacement of hydraulic actuators by motor drives for flight control surfaces is particularly attractive for maintainability, reduction in operating costs and to eliminate the hydraulic fluid. High power density of aerospace motor drives is a key factor in the successful realization of these concepts. An integrated system design approach offer optimization opportunities for further improvements in power density however the challenge lies in its multi-disciplinary modelling and the handling of numerous optimization variables or constraints that are discrete and non-linear in nature. A 4-level modelling paradigm has been proposed by multiple authors to represent a motor drive.
2017-09-19
Technical Paper
2017-01-2029
Thibaut BILLARD, Cedric Abadie, Bouazza Taghia
The present paper reports non-electrically intrusive partial discharge investigations on aeronautic and electric vehicle motors fed by SiC inverter drive under variable environmental conditions. A representative test procedure and experimental set-up based on operating aeronautic conditions are essential to ensure the accuracy and reliability of partial discharge test on aircraft systems to make informed decisions on insulation system design choice. The aim of this paper is to demonstrate the feasibility of partial discharge test of the insulation system on a different type of motor under such conditions, both electrically and environmentally. To do so, the paper will start by detailing the innovative experimental set-up to be used in the study. It mainly consists in a high-voltage (1000V) inverter drive using SiC components to provide fast rise time surges.
2017-09-19
Technical Paper
2017-01-2033
Minh-khoa. Lam, Christopher Buterhaugh, Luis Herrera, Bang Tsao
In order to study the effects on the drive shaft connecting the generator and gearbox, a detailed model of the shaft with multiple degrees of freedom was developed. An accessory gearbox model was also included in order to simulate a more realistic load on the engine. The engine is modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. The dynamic Dual Spool High Bypass engine, model JT9D, was used for this study. A synchronous generator is connected to the high-pressure and low-pressure spool (one generator per spool). The overall system model is composed by the engine, the shaft, the gearbox, the generator, and the electric loads. The shaft is modeled through a direct connection between the generator and the engine. Lastly, the gearbox contains multiple different loads extracting power from the engine as well as the power losses associated with gears through friction and other means.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
The objective of this work is to optimize the operating parameters of the Direct Injection single cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTHE), Hydro carbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTHE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets, and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-17
Technical Paper
2017-01-2498
David B. Antanaitis, E Lloyd
This paper describes the development work that went into the creation of the J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications of it. The J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command).
2017-09-17
Technical Paper
2017-01-2499
Xianyao Ping, Yuxin Pang, YU TANG
The engine brake is widely used as auxiliary brake device for its continuous brake torque. The engine brake performance is usually determined in the laboratory or proving ground according to relevant standards. The main purpose of this paper is to introduce an on-vehicle measurement system to measure the engine brake performance in the driving process. The on-vehicle measurement system makes use of the vehicle driving information to deduce the engine brake performance during transportation, which can reduce the test times in the laboratory or proving ground and the sensor cost. The measurement system based on the vehicle longitudinal dynamics can adapt to various vehicle automatically without measuring the vehicle or engine parameters before installation. And the measurement system can also estimate gross vehicle mass approximately.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more emissions than the butanol addition at low engine operating condition.
2017-09-04
Technical Paper
2017-24-0099
Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
2017-09-04
Technical Paper
2017-24-0081
Luigi De Simio, Michele Gambino, Sabato Iannaccone
In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of consumptions. The possibility offered by the dual fuel (DF) systems, to combine the efficiency and performance of a diesel engine with the advantages offered by the gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
2017-09-04
Journal Article
2017-24-0088
Gregory Roberts, Christine Mounaim Rousselle, Mark Musculus, Martin Wissink, Scott Curran, Ethan Eagle
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels of differing reactivity (i.e., autoignition characteristics) to control combustion phasing. RCCI is defined by an early, high-pressure, direct injection of a high-reactivity fuel into a premixture of low-reactivity fuel and air that yields a significant dwell before start of combustion. The degree of in-cylinder stratification of the two fuels can be altered by varying the injection timing of the high-reactivity fuel, causing transitions between various regimes of combustion. These progress as injection timing is retarded from highly-premixed autoignition to sequential autoignition driven by reactivity stratification (i.e., RCCI) to more diffusion-controlled, diesel-like combustion.
2017-09-04
Technical Paper
2017-24-0078
R. Vallinayagam, S. Vedharaj, Yanzhao An, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Mani Sarathy, Bengt Johansson
Abstract Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate under various start of injection (SOI) conditions. LN and a five-component surrogate for LN, comprised of 43% n-pentane, 12% n-heptane, 10% 2-methylhexane, 25% iso-pentane and 10% cyclo-pentane, has been tested in a single cylinder optical diesel engine. The transition in combustion homogeneity from CI combustion to homogenized charge compression ignition (HCCI) combustion was then compared between LN and its surrogate. The engine experimental results showed good agreement in combustion phasing, ignition delay, start of combustion, in-cylinder pressure and rate of heat release between LN and its surrogate.
Viewing 1 to 30 of 43903