Criteria

Text:
Display:

Results

Viewing 1 to 30 of 920
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-03-28
Technical Paper
2017-01-1174
Vincent Freyermuth, Aymeric Rousseau
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
2017-03-28
Technical Paper
2017-01-1701
Sagar Mody, Thomas Steffen
Abstract The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
2017-03-28
Technical Paper
2017-01-1262
David Baker, Zachary Asher, Thomas Bradley
Abstract The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Journal Article
2017-01-1154
Jimmy Kapadia, Daniel Kok, Mark Jennings, Ming Kuang, Brandon Masterson, Richard Isaacs, Alan Dona, Chuck Wagner, Thomas Gee
Abstract The automotive industry is rapidly expanding its Hybrid, Plug-in Hybrid and Battery Electric Vehicle product offerings in response to meet customer wants and regulatory requirements. One way for electrified vehicles to have an increasing impact on fleet-level CO2 emissions is for their sales volumes to go up. This means that electrified vehicles need to deliver a complete set of vehicle level attributes like performance, Fuel Economy and range that is attractive to a wide customer base at an affordable cost of ownership. As part of “democratizing” the Hybrid and plug-In Hybrid technology, automotive manufacturers aim to deliver these vehicle level attributes with a powertrain architecture at lowest cost and complexity, recognizing that customer wants may vary considerably between different classes of vehicles. For example, a medium duty truck application may have to support good trailer tow whereas a C-sized sedan customer may prefer superior city Fuel Economy.
2017-03-28
Journal Article
2017-01-0245
Kanna Akella, N. Venkatachalam, K. Gokul, Keunho Choi, Ramachandraprabhu Tyakal
Abstract Voice of customer is typically captured through multiple connect points like surveys, warranty claims, social media, and so on. Customer verbatim is collected through these connect points to encourage free expression of opinion by customers. Such verbatim data is generally of high value and is typically analyzed using Natural Language Processing (NLP) techniques for translating into influencing actions in manufacturing, customer service, marketing, and product development departments. One of the challenges in analyzing unstructured verbatim data is to map that data onto appropriate concern codes (CCCs), which are typically used in automotive firms for tracking quality and satisfaction metrics. These concern codes map to a hierarchy of function areas in the organization aimed at improving product, service and hence the customer’s overall experience.
2017-03-28
Journal Article
2017-01-0247
N. Khalid Ahmed, Jimmy Kapadia
Abstract Electrified vehicles including Battery Electric Vehicles (BEVs) and Plug-In Hybrid Vehicles (PHEVs) made by Ford Motor Company are fitted with a telematics modem to provide customers with the means to communicate with their vehicles and, at the same time, receive insight on their vehicle usage. These services are provided through the “MyFordMobile” website and phone applications, simultaneously collecting information from the vehicle for different event triggers. In this work, we study this data by using Big Data Methodologies including a Hadoop Database for storing data and HiveQL, Pig Latin and Python scripts to perform analytics. We present electrified vehicle customer behaviors including geographical distribution, trip distances, and daily distances and compare these to the Atlanta Regional Survey data. We discuss customer behaviors pertinent to electrified vehicles including charger types used, charging occurrence, charger plug-in times etc.
2017-03-28
Journal Article
2017-01-1295
Andres Toledo, Rodrigo Felix
Abstract Political and social trends in the automotive industry production and consumption have changed in the last decade, driving a demand for more efficient, low-fuel consuming, clean vehicles in most markets nowadays. Recently the demand for such vehicles has been increasing and emerging markets are no exception; automakers all around the world have invested heavily in developing new electrification technologies that would comply with the newer and stricter regulations and environmental policies, being Start-Stop systems one of the preferred approaches due to their lower complexity and cost compared to full and mild hybrids. Mexico stands out as a challenge for the implementation of this technology due to its wide range of altitudes, temperatures, traffic jams, and some other contributing factors that can hinder this type of application – especially in its bigger and more populated cities.
2017-03-28
Journal Article
2017-01-0243
Zhenghui Sha, Veronica Saeger, Mingxian Wang, Yan Fu, Wei Chen
Abstract For achieving viable mass customization of products, product configuration is often performed that requires deep understanding on the impact of product features and feature combinations on customers’ purchasing behaviors. Existing literature has been traditionally focused on analyzing the impact of common customer demographics and engineering attributes with discrete choice modeling approaches. This paper aims to expand discrete choice modeling through the incorporation of optional product features, such as customers’ positive or negative comments and their satisfaction ratings of their purchased products, beyond those commonly used attributes. The paper utilizes vehicle as an example to highlight the range of optional features currently underutilized in existing models. First, data analysis techniques are used to identify areas of particular consumer interest in regards to vehicle selection.
2017-03-28
Technical Paper
2017-01-0173
Stephen Andersen, Sourav Chowdhury, Timothy Craig, Sangeet Kapoor, Jagvendra Meena, Prasanna Nagarhalli, Melinda Soffer, Lindsey Leitzel, James Baker
Abstract This paper quantifies and compares the cooling performance and refrigerant and fuel cost savings to automobile manufacturers and owners of secondary-loop mobile air conditioners (SL-MACs) using refrigerants hydrofluorocarbon (HFC)-134a and the available alternatives HFC-152a and HFO-1234yf. HFC-152a and HFO-1234yf are approved for use by the United States Environmental Protection Agency (US EPA) and satisfy the requirements of the European Union (EU) F-Gas Regulations. HFC-152a is inherently more energy efficient than HFC-134a and HFO-1234yf and in SL-MAC systems can generate cooling during deceleration, prolong comfort during idle stop (stop/start), and allow powered cooling at times when the engine can supply additional power with the lowest incremental fuel use. SL-MAC systems can also reduce the refrigerant charge, emissions, and service costs of HFO-1234yf.
2017-03-14
Journal Article
2016-01-9114
Hoon Lee, Delbert Tesar, Pradeepkumar Ashok
Abstract In order to design the in-wheel motor (IWM) for Electric Vehicles (EV), it is necessary to analyze the desired (expected) duty cycle at a higher performance level in order that the IWM becomes commercially relevant. The duty cycle may be representative of different segments of the customer base. Or, the individual customer may wish to have a set of IWMs that uniquely meet his/her measured “demand” cycle for a balance of drivability and efficiency. Questions then arise: How to measure the demand cycle of an individual? What 2 or 3 standard duty cycles should be offered as customer choices for their vehicle? Should the IWM represent multiple speed domains to enhance efficiency and drivability? Can the vehicle be updated rapidly 2 to 3 years after purchase? Etc. In this paper, we lay the groundwork to answer these types of customer questions for an EV with four independent IWMs.
2017-01-10
Technical Paper
2017-26-0036
Ingo Steinberg, Dan Freiholtz, Gereon Hellenbroich
Abstract The reduction of CO2 emissions at vehicle level through the improvement of transmission efficiency represents the essential goal of transmission development engineers. New requirements, such as the recovery of the kinetic energy of the vehicle while coasting, the hybridization of drivetrains and autonomous driving, are challenges that can best be overcome with automatic transmissions. Dual clutch transmissions (DCT) with power-on-demand actuation systems offer a particularly efficient method of meeting the new requirements. However, many markets show vehicle applications with production volumes of less than 100.000 units per year. FEV’s new DCT family is conceived especially for customers in these markets. The re-use of proven subsystems which are already in series production results in a "business case" for applications with lower volumes also. This article introduces this transmission family.
2017-01-10
Technical Paper
2017-26-0088
Christoph Danzer, Jens Liebold, Erik Schreiterer, Jörg Mueller
Abstract Currently known hybrid systems are technically complex, cost-intensive and referring to this for many end-customers not available. Under this boundaries IAV has developed a cost-optimal concept of an efficient and modular powertrain platform for electric and hybrid vehicles. The system is based on one unity gear-set for up to three speeds, which enables seamless shifting with only one friction based clutch. With this platform powertrains can be realized by using a maximum number of carry over parts (COP) for electric vehicles as well as for hybrids. The derivable hybrid powertrains of the platform system are designed for 48V electric motors (EM) which enables the maximum cost potential in combination with the realized gear set and transmission technology. The real simple powertrain platform concept is furthermore scalable for different vehicle segments optionally with or without a hybrid option.
2017-01-10
Technical Paper
2017-26-0078
Nandagopalan Chidambaram, Sridhar Prasad Chandrasekar, VM Maheshwar, Prabaharan Palanivelu, Aravapalli Sriniwas
Abstract In the past few decades, improvement on fuel efficient technologies have progressed rapidly, whereas little emphasis is being made on how the vehicle should be driven. Driving habits significantly influences fuel consumption and poor driving habits leads to increased fuel consumption. In this paper a new system called “Green Drive” is being presented wherein driving habits are closely monitored, evaluated and details are systematically presented to the user. Green Drive system monitors key driving parameters like speed, gear selection, acceleration, unwanted engine idling periods, aggressive braking and clutch override and presents an ecoscore on the infotainment system which is reflection of users driving behavior. The system also offers guidance on the scope for improving driving habits to achieve better ecoscore and hence reduced fuel consumption.
2017-01-10
Technical Paper
2017-26-0018
Douglas Eddy, Shreyas Patil, Sundar Krishnamurty, Ian Grosse, Chandrashekhar Thorbole
Abstract Prevention of passenger ejection from motor coach seats in the case of rollover and frontal crashes is critical for minimizing fatalities and injuries. This paper proposes a novel concept of affordably retrofitting 3-point seatbelts to protect passengers during these significant crash scenarios. Currently, the available options involve replacement of either the entire fleet, which takes time to avoid extremely high costs, or all seats with new seats that have seatbelts which is still expensive. Alternatively, this paper presents the development of an innovative product that can be installed in seat belt-ready bus structures at a fraction of the cost. The efficacy of the design is studied using finite element analysis (FEA) to meet Federal Motor Vehicle Safety Standards (FMVSS) 210 standards for conditions involved in frontal and side impacts.
2017-01-10
Journal Article
2017-26-0119
Ragupathi Soundara Rajan, Vijay Sharma, Ashraf Emran, Devising Rathod, John Henry Kwee, Thorsten Michaelis-Hauswaldt, Thomas Körfer
Abstract The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
2016-11-08
Technical Paper
2016-32-0061
Da Wang, Dingchao Qian, Bo Wang
Abstract This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
2016-10-25
Technical Paper
2016-36-0368
Eduardo dos Santos Costa, Jony Javorski Eckert, Fabio Mazzariol Santiciolli, Ludmila Corrêa de Alkmin e Silva, Fernanda Cristina Corrêa, Franco Giuseppe Dedini
Abstract The development of hybrid vehicles has reached in recent years a high technical and commercial importance. In general, varied vehicular settings enable a motorization with several alternatives and conventional energies combined in order to increase the performance while reducing consumption and environmental impact. In the context of hybridization, particular attention has been given to vehicles that consider a secondary driving source of electric nature, mainly in countries where its cost is relatively low when compared with the cost of fossil fuels such as gasoline. This paper aims to achieve an economic and energy analysis of a hybridized vehicle. The last one has a conventional traction front-wheel driven by an internal combustion engine (ICE) and an electric traction rear-wheel propelled by electric motors (EMs) in-wheel.
2016-10-25
Technical Paper
2016-36-0169
Emilio C. Baraldi, Paulo Carlos Kaminski
Abstract The competition among automotive industries increases each year worldwide. Among their diverse needs, what can be highlighted are: market expansion, model diversification, competitive prices, customer-recognized quality, new products release in shorter time periods, among others. The occurrence of flaws that might compromise the health or safety of the product’s user is admittedly one of the largest issues for any manufacturer, especially if these flaws are identified after its commercialization (recall). In this work, a study on recall in the automotive industry in the Brazilian market will be presented, comprising the years of 2013 and 2014. Reasons and causes of recall are addressed, based on the sample of the aforementioned research, with special emphasis on flaws derived from the production process. The conclusion at the end of the work is that the final assembly in the automotive manufacturing process is what requires more attention from engineering area.
2016-10-25
Technical Paper
2016-36-0167
Fábio Coelho Barbosa
Abstract Emissions from motor vehicles have been a subject of concern in urban areas, as great amounts of population have been permanently exposed to large amounts of pollutants, with intrinsic adverse health effects. In this context, in the last two decades, stringent emissions standards have been developed to control the maximum emission limits of the so called regulated pollutants. This continuous reduction of emission targets has imposed a great effort to engine and vehicle manufacturer in the development of technological solutions for emission limits compliance, which can be done by reducing engine-out emissions through improvements in combustion process and fuel management system, as well as by using aftertreatment devices in the exhaust system.
2016-10-25
Technical Paper
2016-36-0177
Fábio Coelho Barbosa
Abstract Public transport has been considered the preferred strategy to reduce congestion and pollution from urban road traffic. For low to medium capacity, bus systems are considered the most affordable and flexible mode. Currently, diesel based systems still dominate transit bus market, due to their high productivity, low deployment costs, technological maturity, operational reliability and flexibility (high daily ranges, fast refuelling and no infrastructure requirement along the routes). However, although some important improvements in engine technology and aftertreatment devices, enforced by emission standards improvements (Euro VI, US 2010 and those related), have been achieved, it is well known that there is a limit to cleaning exhaust diesel buses exhaust. In this context, transit authorities and operators have been under pressure to shift for more environmental friendly technologies.
2016-10-25
Technical Paper
2016-36-0171
Leandro Brasil Araujo, Juliano Tessaro, Renan Sardim
Abstract Due to financial global crisis started in 2008 and intensified in the past years in Brazil, the maintenance of a good company’s financial situation is a big challenge and it is more relevant in actual moment. Because of expected turbulent scenario for the next years, it is necessary to adopt strategies to mitigate risks that involve Supply Chain impacting industrial production. In this way, it is crucial adopt strategies and actions that assist to evaluate the performance of suppliers and its associate potential financial risk, what can be considered a companies’ success differential factor during crisis period as well. In this scenario, MWM Motores Diesel adopts an internal process of monitoring the risk of suppliers based on internally developed tools and others available at market.
2016-10-25
Technical Paper
2016-36-0327
Leandro Terem, Camila Serafim, Ernani Martinez, Marcos Vicentin, Marcelo Massarani
Abstract In the current automotive industry, in an increasingly challenging environment due to strong competition, to develop a product that performs its functions objectively, with quality and mainly with the lowest possible cost, these are the keys to conquer competitive advantage. This paper is intended to explore cost reduction of an automotive system by using the techniques of the methodology EV / AV (Engineering Value / Analysis Value). The analysis are framed as exploratory, in the form of study, with ratings of the components and their functions, followed by the generation of ideas with the completion of an indication of a great potential for a product development with optimized cost.
2016-10-17
Technical Paper
2016-01-2224
Miriam Di Russo, Jerry Ku, Juan Briones Idrovo
Abstract This paper details the development of the control algorithms to characterize the behavior of an electrohydraulic actuated dry clutch used in the powertrain of the Wayne State University EcoCAR 3 Pre-Transmission Parallel hybrid vehicle. The paper describes the methodology and processes behind the development of the clutch physical model and electronic control unit to support the calibration of the vehicle’s hybrid supervisory controller. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in final stages of Year Two competition, which focuses on the powertrain components integration into the selected hybrid architecture. The dry clutch used by the team to enable the coupling between the engine and the electric motor is a key component of the Pre-Transmission Parallel configuration.
2016-10-17
Technical Paper
2016-01-2225
Juan Sebastian Briones Idrovo, Jerry Ku
Abstract This paper details the development of a test-bench simulation to characterize the behavior of an electro-hydraulic actuated dry clutch used in a pre-transmission parallel hybrid powertrain architecture of Wayne State University EcoCAR 3. Engage and disengage systems play a crucial role in a pre-transmission parallel hybrid architecture. The most common device used to meet the purpose of physically connecting internal combustion engine and electric powertrains is a dry clutch. Its own characteristics and capabilities allow its usage for this application. The transition between the pure electric and hybrid modes is dictated by the main control strategy. Therefore, the engaging system will be widely used when switching from charge depleting to charge sustaining mode, and vice versa. In addition, when torque is required from both sources for higher performance, the clutch will be responsible for mechanically connecting both torque sources.
2016-10-17
Technical Paper
2016-01-2222
Eduardo D. Marquez, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
2016-09-27
Technical Paper
2016-01-8128
Vladimir G. Shevtsov, Alexandr Lavrov, Zahid A. Godzhaev, Valentin M. Kryazhkov, Gennagy S. Gurulev
Abstract The objective of this study is to identify the most popular agricultural tractor models in Russia by their engine ratings and countries of origin. This review presents an analysis of changes in the composition of engine-ratings and sales volume of agricultural tractors in the Russian market between 2008 and 2014. Including knock-down kits, the countries of origin are Russia, the CIS-countries and non-CIS Countries. The variety of manufacturers, highlight the leading international companies which have supplied up to 200 units is discussed. The papers shows that CIS-manufactured tractors represent the greatest number in the market - up to 57 per cent, tractors from non-CIS countries occupy up to 12 per cent of the market, and the number of Russian models is quite limited - 3.0 per cent in 2012 and 3.4 per cent in 2014.
2016-04-05
Technical Paper
2016-01-0003
Alberto Taraborrelli, Francesco Braghin
Abstract This paper reports the studies, design and developments of an electronic electro-actuated gearshifter installed on the DP7, which is Politecnico di Milano car that took part at Formula SAE 2015 competitions in Hockenheim and Varano dè Melegari. The original idea was born to replace the hydraulic gearshift system used until 2011 because of its high weight and cost. After many evaluations about the kind of technology to use, made by previous team members in the electronic department, the final project was a fully electric shifter. This system has proven its qualities among which are lightness and low cost.
2016-04-05
Technical Paper
2016-01-0174
Jun Ni, Jibin Hu, Xueyuan Li, Bin Xu, Junjie Zhou
Abstract In order to discuss the limit handling performance of a FSAE race car, a method to generate the G-G diagram was proposed based on phase plane concept. The simulated G-G diagram was validated by experiments with an electric FSAE race car. In section 1, a nonlinear 7 DOFs dynamic model of a certain electric FSAE race car was built. The tire mechanical properties were described by Magic Formula, and the tire test data was provided by FSAE TTC. In section 2, firstly the steady-state yaw rate response was discussed in different vehicle speed and lateral acceleration based on the simulations. Then the method to generate the G-G diagram based on phase plane concept was proposed, and the simulated G-G diagram of a certain FSAE race car was obtained. In section 3, the testbed FSAE race car was described, including the important apparatuses used in the experiments. Based on the race track experiment, the G-G diagram of the race car was obtained.
Viewing 1 to 30 of 920