Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 6701
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2309
hua Wen, Shuaishuai Liang, Peng Chen, Guangjun Jiang
In this paper, a contrast experiment has been carried out for discussing the phenomenon of fuel dripping at the end of injection by using the different nozzles with varied materials. The experiment results show that the nozzle deformation has an important effect on the fuel dripping at the end of injection. The duration of the fuel shut-off process with the steel nozzle which producing smaller deformation is shorter than the polymethyl methacrylate nozzle. The mass of fuel dripping with the steel nozzle is less. For implementing a deep analysis on the experimental phenomenon about the fuel dripping with the polymethyl methacrylate nozzle, a three dimensional numerical simulation research was carried out for analyzing the influence of fuel flow inside nozzle on the solid deformation and stress distribution of the nozzle by using Fluid-Structure-Interaction method.
2017-10-08
Technical Paper
2017-01-2226
Edward S. Richardson, Bruno S. Soriano, Mathew Middleton, Michael J. Gill
Cylinder deactivation enables improvements in fuel economy in spark-ignition engines by reducing pumping losses during part load operation. The efficiency benefits of a new intake valve system that enables cycle-by-cycle deactivation of different cylinders is investigated in this study. The system minimises the need for throttling by varying the fraction of strokes that are deactivated in order to vary engine output. The intake valve system involves two intake valves in series, with a fast solenoid-actuated valve upstream of a conventional cam-actuated intake valve. Compared to conventional cam-actuated valves, the new valve system has potential to achieve very rapid closing rates with a high degree of flexibility in respect of the timing of inlet valve closure. The fuel economy benefits provided by a number of valve control strategies are evaluated using a one-dimensional modelling approach, considering a vehicle following the New European Drive Cycle.
2017-10-08
Technical Paper
2017-01-2327
Joonsik Hwang, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, Tarun Gupta
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigates the atomization and mixing characteristics of biodiesel fuels in a constant volume combustion chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of diesel fuel. The tested fuels were injected by a common-rail injection system with injection pressures of 40, 80, and 120 MPa. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow characteristics. Sauter mean diameter (SMD) was measured by a phase doppler particle analyzer.
2017-10-08
Technical Paper
2017-01-2427
Suresh Kumar Kandreegula, Rahul Jain, Shivdayal Prasad, Rahul Machiya
Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this the design intent performance is not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening.
2017-10-08
Technical Paper
2017-01-2423
Xiaoming Ye, Yan Fu, Wei Li, Yuze Jiang, Shixin Zhu
Crankshaft main bearing is the key component of internal combustion engine(ICE), which is used to support the movement of crank link mechanism and realize the conversion of energy. The lubrication performances and wear life of the crankshaft main bearing will directly affect the working efficiency and reliability of ICE. Therefore, it is very important to study the lubrication performances of the crankshaft main bearings. In this paper, a 16V marine diesel engine was studied as the research object. Based on the AVL-Designer software platform, the crank link mechanism dynamics model and the main bearing fluid lubrication numerical model were established. Numerical analysis was carried out on the lubrication performances of the crankshaft main bearings under different rotating speed conditions. The stress state, the maximum oil film pressure, the minimum oil film thickness, the axis orbit and other lubrication performance parameters were obtained from the results.
2017-09-19
Technical Paper
2017-01-2098
Didier Friot, Loic Meiffre, Christophe Vandaele
With air traffic demand constantly increasing and several years of aircraft production in backlog, major Aircraft manufacturers are now shifting focus to improving assembly process efficiency. One of the most promising solutions, known as “One Side Assembly”, aims to perform the whole assembly sequence from one side of the structure (drilling, temporary fastener installation and removal, blind fastener installation, assembly control) and with high level of integrated automation. A one-sided, or blind, fastener that is capable of matching the performance of current two sided structural fasteners while meeting volume and cost objectives can be a major driver for assembly process efficiency improvements. To achieve a blind fastener assembly capable of both fully automated and manual installations while providing robust cycle times and assembly cost reductions is full of challenges.
2017-09-19
Technical Paper
2017-01-2097
Josh Elrod
Installation of collars and nuts onto interference-fit bolts requires complex anvil hardware on the wet side of the spar or wing panel. Many Electroimpact machines are capable of automatically changing riveting and bolting anvils, but operator involvement is required to connect fastener feed equipment. This is unacceptable in a lights-out cell, but is difficult to eliminate. That’s because the nut and collar anvils must be able to rotate with the machine C axis, which rotates about the Z axis. This means that rotation capability must also be built into the fastener feed system. Newly installed lights-out cell machines are equipped with a “Spinner” assembly which rotates with the machine C axis. The Spinner consists of an individual feed path for each size and type of fastener to be fed rotating inside of a stationary annulus. Air is blown into two points in each Spinner path to convey the fasteners along the inner diameter of the annulus.
2017-09-04
Technical Paper
2017-24-0073
Carlo Beatrice, Giacomo Belgiorno, Gabriele Di Blasio, Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco
Technologies for direct injection of fuel in compression ignition engines are in continuous development in order to get an increasingly high injection pressure. One of the most investigated component of this system is the injector; in particular, main attention is given to the nozzles characteristics as diameter, number, angle, internal shape. The reduction of nozzle hole diameter seems the simplest way to increase the fuel velocity and to promote the atomization process. On the other hand, the number of the holes must increase to keep the desired mass flow. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain a cylindrical surface for the delivery of the fuel on 360° degrees; while the plate lift is calibrated to obtain the desired fuel mass flow.
2017-09-04
Technical Paper
2017-24-0101
Pedro Marti-Aldaravi, Kaushik Saha, Jaime Gimeno, Sibendu Som
Abstract Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
2017-09-04
Technical Paper
2017-24-0108
Alessandro Montanaro, Marianna Migliaccio, Luigi Allocca, Carlo Beatrice, Valentina Fraioli, Roberto Ianniello
Abstract In the present paper, a new concept of open nozzle spray was investigated as possible application for compression ignition engines. The study concerns an experimental and numerical characterization of a spray generated through a prototype high-pressure hollow-cone nozzle (HCN). The experimental description of the injection process was carried out under evaporative and non-evaporative conditions injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature in order to measure the spatial and temporal fuel pattern at engine-like gas densities. OpenFOAM libraries in the lib-ICE version of the numerical code were employed for simulating the spray dynamics after a first validation phase based on the experimental data. Results show a typical spray structure of the outward-opening nozzle with the overall fluid-dynamic arrangement having a good fuel distribution along the hollow-cone geometry but showing a reduced spatial penetration.
2017-09-04
Technical Paper
2017-24-0111
Heechang Oh, JuHun Lee, Seungkook Han, Chansoo Park, Choongsik Bae, Jungho Lee, In Keun Seo, Sung Jae Kim
Abstract In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics.
2017-09-04
Technical Paper
2017-24-0005
Guillaume Goumy, Pascal Chesse, Nicolas Perrot, Rémi Dubouil
Abstract Downsizing has nowadays become the more widespread solution to achieve the quest for reaching the fuel consumption incentive. This size reduction goes with turbocharging in order to keep the engine power constant. To reduce the development costs and to meet the ever tightening regulations, car manufacturers rely more and more on computer simulations. Thus developing accurate and predictable turbocharger models functioning on a wide range of engine life cases became a major requirement in industrial projects. In the current models, compressors and turbines are represented by look-up tables, experimentally measured on a turbocharger test bench, at steady point and high inlet turbine temperature. This method results in limited maps : on the one hand the compressor surge line and on the other hand the flow resistance curve behind the compressor. Mounted on an engine, the turbocharger encounters a wider scale of functioning points.
2017-09-04
Technical Paper
2017-24-0023
Karim Gharaibeh, Aaron W. Costall
Abstract Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
2017-09-04
Technical Paper
2017-24-0020
Michele Becciani, Alessandro Bianchini, Matteo Checcucci, Lorenzo Ferrari, Michele De Luca, Luca Marmorini, Andrea Arnone, Giovanni Ferrara
Abstract The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor.
2017-09-04
Technical Paper
2017-24-0031
Imre Gergely Nagy, Andrea Matrisciano, Harry Lehtiniemi, Fabian Mauss, Andreas Schmid
Abstract Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup modelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup.
2017-07-10
Technical Paper
2017-28-1928
Rajesh Babu Channamaneni, P Kannan, Prasad Padavala
Abstract Engine mounts and mounting brackets play a critical role in determining NVH performance of a vehicle. A lot of work has been done in the area of virtual simulation using FE models to study engine mounting system performance and its impact on vehicle level performance. An overall approach towards engine mounting system validation at vehicle level is also very critical to validate simulation results in a prototype based on which further refinement work will be carried. In this paper a detailed procedure for engine mount and mounting bracket physical validation at vehicle level is presented. Various tests to be performed at vehicle level to quantify engine mount and mounting bracket performance parameters is discussed in detail along with measurement procedures and techniques. Test results are interpreted and its impact on overall performance is also explained.
2017-07-10
Technical Paper
2017-28-1934
Anil Thakur, Md Tauseef Alam, Venkatesh Kumar PS, P D Kulkarni, Senthur Pandian
Abstract Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine.
2017-07-10
Technical Paper
2017-28-1947
Suresh Kumar Kandreegula, Kamal Rohilla, Naveen Sukumar, Kunal Kamal
Abstract A propeller shaft is a mechanical component of drive train that connects transmission to drive wheels/axle with the goal to transfer rotation and torque. It is used when the direct connection between transmission and drive axle is not possible due to large distance between their respective assigned design spaces. In commercial vehicles especially in heavy duty (GVW/GCW>15 tons) a single piece propeller shaft is seldom used due to its inherent disadvantages and therefore, most if not all, of the setups consists of multiple pieces of propeller shaft which are directly mounted on to frame cross members with the help of mounting brackets. As such the mounting bracket assembly undergoes various dynamic and static loading conditions and should be able to withstand these loads. This paper will focus on the FEA analysis of propeller shaft mounting assembly system.
2017-07-10
Technical Paper
2017-28-1948
John Samuel Kopppula, Thundil Karuppa Raj Rajagopal, Edison Gundabattini
Abstract The present work is concentrated to study the effect of varying inlet pressures on the dynamics of the suction valve obtained from a hermetic reciprocating compressor. The effect of valve functioning on the efficiency of a compressor is highly acceptable. Rather than the delivery valve, the suction valve has a significant impact on the compressor efficiency. The reed valve in a hermetic compressor is a cantilever type arrangement. The valve operates due to the pressure difference between the suction muffler and the cylinder. The numerical analysis which includes Fluid-structure interaction is used in the present study. The flow and structural domain employed in the present study are modelled with Solidworks 15.0. The fluid structure interaction analysis is a combination of ANSYS Fluent and ANSYS structural. These two are coupled with a system coupling in ANSYS Workbench 16.0. The numerical results obtained from the simulation are validated with the experimental data.
2017-07-10
Technical Paper
2017-28-1961
Shishir Sirohi, Saurabh Yadav, B. Ashok, V Ramesh Babu, C Kavitha, K Nantha Gopal
Abstract The main objective of the study is to design and analyze casing and supports of a transmission system for an electric vehicle. The system comprises of motors as the power source, constant mesh gear box coupled with limited slip differential as the power transmitting source. The space occupied by the transmission system is a foremost constraint in designing the system. The wear and tear in the system is caused by the gear meshing process and transmission error which lead to failure of the transmission system. This internal excitation also produces a dynamic mesh force, which is transmitted to the casing and mounts through shafts and bearings. In order to overcome such issues in a transmission system, a gear box casing, differential mounts and motor mounts have been designed by the use of CAD-modeling software “SOLIDWORKS”. The designs were imported to FEA software “ANSYS” for carrying out static structural analysis.
2017-07-10
Technical Paper
2017-28-1973
Sakthivel Balasubramaniyan, Sridhar Ramachandran, Srinivasan Bashyam, Suresh Kumar
Abstract Solenoids are type of inductive actuators extensively used in mobility industries as flow control valves. Now a day, the conventional mechanical actuators are replaced by solenoids, because the solenoids have high precision control and faster response within a controlled magnetic field. Solenoids are classified into two types based on the mode of operation. Solenoid is operated either in ON/OFF mode for switching applications or in Pulse Width Modulation (PWM) for high frequency applications. A solenoid consists of two critical parts, one is the reciprocating plunger and another is the static valve case. During higher number of repeated operations, the solenoid plunger hits the valve case and induces wear on the seating surface. The solenoids are also exposed to the corrosive environment in some applications.
2017-06-29
Technical Paper
2017-01-9453
Tobias Hoernig
Within the scope of today’s product development in automotive engineering the aim is to produce more light and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two dimensions: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
2017-06-29
Journal Article
2017-01-9001
Hermann Ferschitz, Michael Wannemacher, Otto Bucek, Florian Knöbel, Wolfgang Breitfuß
Abstract RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012. Following the successful implementation of the icing conditions specified in EASA CS-25 Appendix C, it was expected that the facility could also be used to simulate the SLD conditions required by EASA CS-25 Appendix O. This paper sets forth theoretical considerations concerning the selection of suitable nozzles and their operation in the existing facility. The transport of large droplets through the contraction nozzle was simulated using a CFD program. The results then served as a basis for deriving secondary droplet breakup. The validations carried out confirm the theoretical considerations and identify potential limits and open research questions.
2017-06-05
Technical Paper
2017-01-1809
Dhanesh Purekar
Abstract Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
2017-06-05
Technical Paper
2017-01-1815
Pranab Saha, Satyajeet P. Deshpande
Abstract This paper discusses the importance of a dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is still a challenge to meet the subsystem target levels that were originally developed for parts based on the barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of the proper manufacturing of a part.
2017-06-05
Technical Paper
2017-01-1760
Weimin Thor, J. Stuart Bolton
Abstract Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
2017-06-05
Technical Paper
2017-01-1907
Yang Wang, Yong Xu, Xiao Tan
Abstract The vibration isolation performance of vehicle powertrain mounting system is mostly determined by the three-directional stiffness of each mount block. Because of the manufacturing tolerance and the coupling effect, the stiffness of mounts cannot be maintained stable. The purpose of this study was to find out the way to optimize the stiffness of mounts via the design of experiments (DOE). According to the DOE process, a full factorial design was implemented. The z-direction stiffness of three mount blocks in the mounting system was selected as the three analysis factors. The maximum and the minimum stiffness of each mount block within the manufacturing tolerance were selected as the two levels. The measured vibration of vehicle body under certain loading case was selected as the response factor. After eight times of experiment, the DOE parameters were analyzed with statistical methods.
2017-06-05
Technical Paper
2017-01-1823
Dennis J. Kinchen
Abstract Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
2017-06-05
Technical Paper
2017-01-1839
Edward T. Lee
Abstract It is common for automotive manufacturers and off-highway machinery manufacturers to gain insight into the system’s structural dynamics by evaluating the system inertance functions near the mount locations. The acoustic response of the operator’s ears is a function of the vibro-acoustic characteristics of the system structural dynamics interacting with the cavity, with the actual load applied at the mount locations. The overall vibro-acoustic characteristics can be influenced by a change in local stiffness. To analyze the response of a system, it is necessary to go beyond analyzing its transfer functions. The actual load needs to be understood and applied to the transfer function set. Finite element (FE) based analysis provides a good foundation for deterministic solutions. However the finite element method decreases in accuracy as frequency increases.
Viewing 1 to 30 of 6701