Display:

Results

Viewing 241 to 270 of 15273
Standard
2014-04-03
This document covers all-metal, self-locking nuts, plate nuts, and gang channel nuts made of a corrosion and heat resistant nickel alloy.
Standard
2014-04-03
This SAE Aerospace Recommend Practice (ARP) is intended to identify both safety related best practices and unique design considerations of metal halides High Intensity Discharge (HID) lamps and power supplies in aircraft applications.
WIP Standard
2014-04-02
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of -30 to 120 °C (-22 to 248 °F). Specific construction details are to be agreed upon between user and supplier. NOTE— SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064
WIP Standard
2014-04-02
The Measurement of Coolant Hose task group conducted a round-robin study to determine the measuring capability of automotive suppliers and users to measure Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall) and wall thickness variation of hose using traditional measuring devices and techniques. Seven companies (five suppliers and two end users) participated in this testing. Based upon the round-robin study this information report will detail procedures, test measuring devices, results and recommendations.
WIP Standard
2014-04-02
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
WIP Standard
2014-04-02
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
WIP Standard
2014-04-02
This SAE Recommended Practice is used for establishing the compression set that could be expected to occur with engine coolant hoses under securing clamps. It seeks to reproduce the type of indentation caused by the clamps in the wall of the hose. An excessive compression set measured by this method would indicate a hose that could eventually alloy leakage of coolant past the clamps in service. This method has been found to give repeatable results in the range of 25% to 50% initial compression.
Technical Paper
2014-04-01
Zamir Zulkefli, Maurice Adams
Abstract Gears are used in numerous applications where mechanical power needs to be transmitted as in the powertrain of cars, buses and other vehicles. These gears can potentially be a significant source of high-frequency vibration and radiated noise in a vehicle, which can be both harmful and objectionable to any listeners in the vicinity. A proposed approach to addressing the gear mesh-frequency vibrations is to utilize the low pass filtering effect of a hydrostatic bearing in a gear mesh-frequency noise mitigation system. This paper describes an experimental investigation of the low pass filtering effect of a hydrostatic bearing using an experimental setup involving a widely available materials testing machine. By using the materials testing machine, appropriately sized hydrostatic bearing and externally pressurized fluid supply system, empirical data was collected that allowed the frequency response of the hydrostatic bearing to be determined. The frequency response of the hydrostatic bearing clearly shows a low pass filtering effect on the applied dynamic loads.
Technical Paper
2014-04-01
Sandeep Kognole
Abstract Geometric Parameters of Gears are mainly driven by two parameters, 1) tooth bending strength & 2) surface durability (pitting). Gear design software (KISSSOFT / ROMAX) propose options on gear parameters for gear pair with result of tooth bending strength & surface durability. This paper does not describe the Gear design software application for optimization of geometric parameters of the gear tooth. It explains the engineering method for Gears parameter optimization. Without using gear design software, optimization of gear geometric parameters is possible by using the gear parameters of existing gear pair. Geometric parameters of existing gear are derived by span measurement method. The geometric parameters such as, Module, Helix angle, Tip/Root diameter, Face width & Tooth modification are optimized by using below parameters derived from existing gear pair Contact Ratio Tooth thickness ratio on working PCD for Pinion & Gear (Working PCD-Root Diameter) per module factor for Pinion & Gear Tip Clearance coefficient for Gear & Pinion The paper also describes a standard procedure to arrive at the optimized geometric parameters for the gear pair.
Technical Paper
2014-04-01
Yinhong Liu, Dazhong Lao, Yixiong Liu, Ce Yang, Mingxu Qi
Abstract Variable nozzle turbine (VNT) adjusts the openings of its nozzles to insure the required flow at throat area, which broadens the operating range of the turbine, and improves the matching relationship between the turbocharger and the engine. But the changes of nozzle openings have significant influence on the flow field structure of downstream radial turbine. To evaluate this effect, the leakage flow through nozzle clearance in various nozzle openings were simulated by unsteady computational fluid dynamic (CFD). Meanwhile, the interaction between nozzle clearance leakage flow and nozzle wake were investigated to reveal its effects on aerodynamic losses and forced responses for downstream rotor. The results showed that the changes of nozzle openings not only affect the interaction between nozzle leakage flows and wake significantly, but also affect aerodynamic performance of the rotor and the blade forced response. With the decreases of nozzle openings, the nozzle leakage flow increases and the interaction between nozzle leakage flow and wake enhances.
Technical Paper
2014-04-01
Mehdi Safaei, Shahram Azadi, Arash Keshavarz, Meghdad Zahedi
Abstract The main end of this research is the optimization of engine sub-frame parameters in a passenger car to reduce the transmitted vibration to vehicle cabin through DOE method. First, the full vehicle model of passenger car including all its sub-systems such as engine, suspension and steering system is modeled in ADAMS/CAR and its accuracy is validated by exerting swept sine and step input. After that, the schematic geometry of sub-frame is modeled in CAD software and transferred to ADAMS/CAR. Hence, the efficiency of the sub-frame in terms of reducing the induced vibration to vehicle cabin is examined through the various road inputs e.g. swept sine, step and random road input type (B). The results will illustrate that the sub-frame has significant effect in reduction of transmitted vibration to occupants. In order to optimize the sub-frame parameters, the sensitivity analysis is performed to derive effective parameters of sub-frame using DOE method. In this regard, the parameters which have dominant effect on transmitted vibration (the stiffness of sub-frame bushing in vertical direction) are optimized via RSM (Response Surface Method) method.
Technical Paper
2014-04-01
Akihiro Kose, Motohiko Koushima, Tomohiro Ukai, Yuki Kawashima, Kouji Zushi
Abstract With increased awareness of environmental issues and regulations, developments for recent automotive engines are progressing towards engines with low fuel consumption. Due to these changes, automotive engine bearings are increasingly used in harsher environments, with higher loading. These operating conditions require bearings with both conformability and fatigue resistance. From the above background, various aluminum alloy bearings have previously been developed, including materials with solid solution treatment to improve their properties, and alloys which can be used with or without an overlay [1, 2, 3]. These materials are known to have good conformability and fatigue resistance. However, while conventional Al-Sn-Si alloy bearings display excellent sliding properties, due to the unceasing trend for engine downsizing, more conformability is required. In this study, by optimizing dispersion of the soft tin phase in Al-Sn-Si alloys, a bearing material with equal fatigue resistance and further improved conformability was developed.
Technical Paper
2014-04-01
Zhibin Quan, Zhiqiang Gao, Qigui Wang, Xiao Wen, Yucong Wang, Bowang Xiao
Abstract Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Technical Paper
2014-04-01
Laurence Claus, Stephan Weitzel
Abstract As automotive technology rapidly provides advances in lighter weight designs and materials, the technology to fasten and join them must keep pace. This paper will explore two uniquely different fastening technologies that are being used to address some of today's demanding application challenges in plastics and thin steel and aluminum sheet. These are two areas of application that have historically provided few good options for designers, especially as they attempt to push the envelope with progressive, light weight designs. The first technology is self- tapping screws for plastics that, although not new, are now evolving to enable smaller bosses and shorter thread engagements, and incorporate light weight design options. Although dependent on the demands of the application, these screws can be produced in both steel and, now, lighter weight materials such as aluminum and plastic. The paper will explore how these technologies can be employed by the designer to obtain desired weight reduction initiatives over more conventional threaded fasteners for fastening plastic.
Technical Paper
2014-04-01
Sangil Kim, Seungwoo Seo, ChungHwa Jung, SeungHyun Baek, ChangGi Ha, KiRyun Ahn, MunBae Tak
Abstract Recently, the demand for improving the merchantability of hood open system has been increasing. A novel concept hood open system was proposed by Hyundai Motor Company (HMC) in 2012, which was based on a two-step open latch mechanism. The new hood opening mechanism satisfies Safety laws and improves merchantability.
Technical Paper
2014-04-01
Rahul Shashikant Patil
Abstract The tailgate is the fifth or the rearmost door of an SUV (Sports Utility Vehicle)[1]. It can be side opening or top opening. It is attached to the BIW (Body In White) with two hinge arrangement. The hinges are designed to take the cantilever load of a normal side opening tailgate along with the passenger ingress/egress load. This means that apart from the doors own weight, the hinges have to take the extra load which a passenger exerts on it by resting his/her forehand on the handle. The hinges are designed to take these loads and under normal circumstances, they do not fail for acceptable number of cycles of opening and closing of the tailgate. But in case of an armored vehicle side opening tailgate, it is quite a challenge for the normal hinges to take the heavy load of the tailgate along with passenger ingress / egress load. The normal hinges (Refer figure-1) obviously fail under such heavy loads either in their design or material configuration. To take this extra load, designers had to think of an innovative arrangement/concept that was simple yet convenient from retrofitting point of view on an armored vehicle configuration.
Technical Paper
2014-04-01
Toshiyuki Chitose, Shu Kamiya, Yasunori Kabeya, Toru Desaki
Abstract In recent years, engines equipped with idle reduction system for fuel saving have been increased in Europe and Japan. Because of the start-stop frequency increase, correspondingly crankshaft and engine bearing contacts also increase. The friction between shaft and bearing is significant to reduce fuel consumption, and besides it, engine bearing wear tends to increase. Therefore, lower friction with small wear engine bearings are expected. In this paper, new developed engine bearing with solid lubricant overlay and its frictional and wear properties are reported (1). As experimental result, a bearing with MoS2 solid lubricant contained polyamide-imide resin coated overlay proved 40% less coefficient of friction, 25% less starting torque and 65% less bearing wear against conventional aluminum alloy bimetal bearing without overlay under close to the start-stop lubrication conditions by testers. Also diesel engine bench test proved less FMEP.
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation. In this paper, a new method is proposed in which the structure borne noise associated with powertrain is quantified easily and reliably.
Technical Paper
2014-04-01
John Morello
Abstract As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts. Some are more effective than others, and all have their drawbacks.
Technical Paper
2014-04-01
Sameer U. Kolte, David Neihguk, Abhinav Prasad, Samir Rawte, Aditya Gondhalekar
Abstract A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®. Further, for the given torque input, the harmonic response of the powertrain mounted on optimized mounts, is evaluated for comparison with NVH targets.
Technical Paper
2014-04-01
Christian Scheiblegger, Nantu Roy, Orlando Silva Parez, Andrew Hillis, Peter Pfeffer, Jos Darling
Abstract Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation. To improve bushing modeling of cab/box mounts for heavy duty/light duty trucks, a practical approach to model non-linear bushing dynamic characteristics has been tested and validated against standard bushing models.
Technical Paper
2014-04-01
Pierre Marquette, Arnaud Dereims, Michael Hugon, Guenael Esnault, Anthony Pickett, Dimitrios Karagiannis, Apostolos Gkinosatis
Abstract Today, LRI is a proven manufacturing technology for both small and large scale structures (e.g. sailboats) where, in most cases, experience and limited prototype experimentation is sufficient to get a satisfactory design. However, large scale aerospace (and other) structures require reproducible, high quality, defect free parts, with excellent mechanical performance. This requires precise control and knowledge of the preforming (draping and manufacture of the composite fabric preforms), their assembly and the resin infusion. The INFUCOMP project is a multi-disciplinary research project to develop necessary Computer Aided Engineering (CAE) tools for all stages of the LRI manufacturing process. An ambitious set of developments have been undertaken that build on existing capabilities of leading drape and infusion simulation codes available today. Currently the codes are only accurate for simple drape problems and infusion analysis of RTM parts using matched metal molds. Furthermore, full chaining of the CAE solution will allow results from materials modeling, drape, assembly, infusion and final part mechanical performance to be used in subsequent analyses.
Technical Paper
2014-04-01
Wei Yang, Wenku Shi, Chunxue Chen
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Technical Paper
2014-04-01
Guenter Bischof, Karl Reisinger, Thomas Singraber, Andreas Summer
In this work, we investigate the rotor bearing loads of a flywheel-based KERS that are caused by dynamic forces and gyroscopic torques during representative driving maneuvers. Based on the governing equations of motion of a gyroscope, the equations for the rotor-platform interactions are developed. These equations, which relate the vehicle's roll, pitch and yaw rate with the internal transverse torques on the flywheel, are integrated into a commercial vehicle dynamics program. An average passenger car model equipped with a typical high-speed flywheel energy storage system is used for the numerical investigations. The flywheel bearing loads produced by some selected, representative driving maneuvers are simulated for different orientations of the flywheel spin axis relative to the body frame. In addition, the dynamic response of the vehicle to the reaction torques is investigated in open and closed-loop vehicle dynamics simulations. Thus, the steering response of a driver model to the gyrodynamics of a flywheel-based KERS is obtained for fully charged KERS as well as during braking and under acceleration boosts.
Technical Paper
2014-04-01
Ralph S. Shoberg, Jeff Drumheller
Abstract Reliable wheel attachment must start with proper tightening of the lug nuts in order to achieve the clamping force necessary to hold the vehicle's wheels securely for all operating conditions. It is the purpose of this paper to provide a complete overview of the theory and practice of using torque-angle signature analysis methods to examine the installation and audits of wheel lug nuts. An accurate estimate of clamp load can be determined without actually measuring the clamp load. The torque-angle signature analysis, known as “M-Alpha”, performed on tightening and loosening curves provides a powerful tool to understand the integrity of a bolted joint when clamp load data is not available. This analysis technique gives insight into the frictional effects, material properties, and geometric factors that can affect the clamp load attained during the installation process.
Technical Paper
2014-04-01
Kenji Matsumoto, Yuki Ono, Yoichi Kojima
In order to maintain the performance of push belt Continuously Variable Transmissions (CVT) over a long period of time, it is important to acquire a fundamental understanding of lubrication performance between a pulley and a metal V-belt. This work examined oil film thickness using the contact pressure on a sliding surface of pulley sheave during driving, which was obtained with an uniquely developed measurement technique. The contact between a belt element and a pulley sheave was treated as a group of small elliptical contact zones. The pressure-viscosity characteristics of lubricant were assigned to Reynolds equation with Roelands experimental formula. Also, in order to increase convergence of the calculation, a multigrid method was used. Calculation results indicate that the oil film thickness at a peak contact pressure measured was approximately 0.3-0.4 μm.
Technical Paper
2014-04-01
Norihiro Hamada, Kiyohiro Suzuki
Abstract ADC12 is one of the common aluminum alloys for automobiles because it has suitable for casting and machining. However, the corrosion resistance of ADC12 is insufficient in comparison with other aluminum alloys. The corrosion depends on chemical composition of aluminum and circumstance around aluminum. It was considered that a crevice such as a seal gap accelerates corrosion rate. Therefore, the corrosion at a sealing gap between ADC12 and rubber gasket was investigated. Salt water corrosion tests were carried out with an o-ring compressed between ADC12 plate and plastic plate. Corrosion depth and corrosion area at sealing surface were measured with a microscope. The corrosion depth at the sealing surface was deeper than that outside it. Since smooth surface of aluminum prevented the sealing surface from corrosion, it was considered that the narrow sealing gap enabled to decrease in the corrosion rate.
Technical Paper
2014-04-01
Robert V. Petrach, David Schall, Qian Zou, Gary Barber, Randy Gu, Laila Guessous
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model. Results show tensile residual stresses induced by the coating have a negative impact on the bearing performance indicated by the increase in subsurface localized plastic strains.
Technical Paper
2014-04-01
Michele Battistoni, Qingluan Xue, Sibendu Som, Eric Pomraning
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics. Needle radial motions are based on high-speed X-ray phase-contrast imaging collected at Argonne National Laboratory.
Viewing 241 to 270 of 15273

Filter

  • Article
    41
  • Book
    18
  • Collection
    5
  • Magazine
    274
  • Technical Paper
    5037
  • Subscription
    1
  • Standard
    9897

Subtopics