Display:

Results

Viewing 181 to 210 of 15767
2015-04-20
WIP Standard
J2371
This SAE Recommended Practice is a test procedure to obtain force data for self-compensating type clamps (SAE Type E, CTB, and CTW).
2015-04-20
WIP Standard
J20/1
This SAE Standard provides ordering information for any SAE 20R1 through SAE 20R4 hose type (such as EC, HT, LT, or combination thereof.) It is a supplement for Government use but may be used by others.
2015-04-20
WIP Standard
J20/2
This SAE Standard provides ordering information for any SAE 20R5 hose type (such as "EC, HT, LT" or combination thereof.) This is a wire-reinforced hose for coolant circulating systems of automotive type engines. This hose consists of a convoluted section with plain ends. The hose shall contain a wire helix or helices in the convoluted section. It is a supplement for Government use but may be used by others.
2015-04-15
WIP Standard
AS4805A
This SAE Aerospace Standard (AS) covers the general requirements for the design, manufacture, and test of Solid State Power Controllers (SSPCs) of both dc and ac ratings for use in electrical power systems. SSPCs conforming to this standard are intended for use in controlling the making and breaking of power circuits for electrically operated equipment and devices, and for providing overload and short-circuit protection.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
2015-04-14
Technical Paper
2015-01-1740
Kelsie S. Richmond, Stephen Henry, Russell Richmond, David Belton
Gasket materials are utilized for various different types of high temperature testing to prevent leaking at bolted joints. In particular, the automotive test services field uses flanged-gasket bolted exhaust joints to provide a convenient method for installation & removal of exhaust components like catalytic converters for aging, performance testing, etc. Recent improvements in the catalyst aging methods require flanged-gasket joints that can withstand exhaust temperatures as high as 1200°C. Gasket materials previously used in these applications like the graphite based gasket materials have exhibited physical breakdowns, severe leakage, and general thermal failures under these extreme temperatures. In order to prevent these leaks, metal-reinforced gasket materials in a number of configurations were introduced to these extreme temperature environments to evaluate their robustness to these temperatures.
2015-04-14
Technical Paper
2015-01-1743
Tanmay Santra, Vikas Kumar Agarwal
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel (MLS) gasket, strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, blocks, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
2015-04-14
Technical Paper
2015-01-0235
Shiv Shankar Prasad, Jahangir Mansoori, Jin Seo Park
Abstract A vehicle horn is a sound-making device used to warn others of any approaching vehicle or of its presence. Some countries require horns by law. Conventional Horns are electromechanical with steel diaphragm and electromagnet acting upon it. Switching of horn is performed by mechanical contact breaker assembly that repeatedly interrupts the current to electromagnetic. Up-Down movement of diaphragm with response to the current creates a sound wave across horn. Conventional Horn faces the problem of wear and tear of mechanical contact and internal parts. Switching of contacts results in arcing. There is no current and surge voltage protection for the coil of conventional horn. These problems of conventional system might be accepted in the general market, but in specific markets which are using horn frequently; these have to be considered as serious issues. Especially, horns are one of the most abusive parts of vehicle in India.
2015-04-14
Technical Paper
2015-01-0431
KI Woo Sung, Jong Gurl Kim, Dae-Un Sung, Hye Mi Kim
Abstract This study examined various warranty data analysis methods to identify and study the one most suitable for Hyundai Motor warranty data. The drawbacks of the conventional life table method were overcome to develop an analysis method optimized for vehicle characteristics. The proposed method was examined for its suitability to various applications, such as providing the information necessary for determining the service life of parts, verifying the effects of design changes, and designing warranty and maintenance policies. The analysis data used in this study were derived from the 10-year powertrain parts warranty data of vehicles sold in the USA, South Korea, and China.
2015-04-14
Technical Paper
2015-01-0923
Mohamed Chouak, Alexandre Mousseau, Damien Reveillon, Louis Dufresne, Patrice Seers
Abstract The transient characteristics of the internal flow dominate all the ensuing processes: spray, fuel-air mixture formation as well as combustion and pollutants formation. Therefore, it is crucial to understand the dynamics of the injectors' internal flow. The objective of this work is to study all transient effects that may impact the internal flow of a single hole injector under different conditions. Since the numerical investigation of such a complex flow is hampered by several factors for the real operating conditions-namely the turbulence, the cavitation and the needle motion-this work is divided into two parts. In the first part, only the effects of turbulence and cavitation are considered through the study of the effects of the fuel properties as well as the injection conditions at the fully open needle position. The impact of these effects is studied by means of the Reynolds and the cavitation number.
2015-04-14
Technical Paper
2015-01-0944
Maryam Moulai, Ronald Grover, Scott Parrish, David Schmidt
Abstract A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
2015-04-14
Technical Paper
2015-01-0948
Le (Emma) Zhao, Ahmed Abdul Moiz, Jeffrey Naber, Seong-Young Lee, Sam Barros, William Atkinson
Abstract High-speed spray-to-spray liquid impingement could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O'Rourke collision models are implemented for the simulation. The paper includes three parts: First, a single spray injected into an initially quiescent constant volume chamber using the Lagrangian approach is simulated to identify the breakup region, which will be considered as a reference to study two-hole impinging jet nozzles.
2015-04-14
Technical Paper
2015-01-0949
Mathis Bode, Tobias Falkenstein, Vincent Le Chenadec, Seongwon Kang, Heinz Pitsch, Toshiyuki Arima, Hiroyoshi Taniguchi
Abstract Compared to conventional injection techniques, Gasoline Direct Injection (GDI) has a lot of advantages such as increased fuel efficiency, high power output and low emission levels, which can be more accurately controlled. Therefore, this technique is an important topic of today's injection system research. Although the operating conditions of GDI injectors are simpler from a numerical point of view because of smaller Reynolds and Weber numbers compared to Diesel injection systems, accurate simulations of the breakup in the vicinity of the nozzle are very challenging. Combined with the complications of experimental techniques that could be applied inside the nozzle and at the nozzle exit, this is the reason for the lack of understanding the primary breakup behavior of current GDI injectors.
2015-04-14
Technical Paper
2015-01-0911
Juliane Wetzel, Michael Henn, Mark Gotthardt, Hermann Rottengruber
Abstract The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
2015-04-14
Technical Paper
2015-01-0669
Nagarjun Jawahar, Saharash Khare
Abstract Automotive OEM's are looking for innovative solutions to capture the possible failure due to warpage and shrinkage of an insert molded part through virtual simulations with help of FEA tools, thereby saving the mold cost, material cost and time. This work demonstrates an approach to study and simulate the failure of an insert molded part which happened after few days of the part molding under idle condition. To simulate the above failure, an innovative approach coupling Moldflow and Abaqus software was derived. First, a flow simulation including phase change of plastic material was carried out with derived parameters, results of which were exported as input to the Abaqus structural solver. Secondly, a thermo-mechanical analysis of the model was then carried out considering the thermal and moisture effect on material property. A good correlation was achieved between the actual failure location and max stress location as predicted by said coupled approach.
2015-04-14
Technical Paper
2015-01-0520
Takaaki Kitahara, Takuo Imai, Osamu Ishigo, Miodrag Perovic
Abstract There has been a requirement for automotive bearings materials to be free of the toxic material lead, in accordance with ELV regulations and from the perspective of environmental problems. Currently, bismuth is used as a replacement for lead in copper alloy based main journal bearings and connecting rod bearings for automotive engines. In recent years, there has been changing to lead-free materials for truck engine bearings. Compared with automotive engines, lots of contaminations in the oil and local contact between the shaft and bearings can occur in truck engines. The ability to tolerate contamination and local contact is therefore required for truck engine bearings. In this development, we find that the addition of 8 mass% bismuth and 1.5 mass% molybdenum carbide particles into copper-tin alloy is effective for improving the ability which allow the contamination and local contacts.
2015-04-14
Technical Paper
2015-01-0548
Andrew Halfpenny, Robin Anderson, Xiaobin Lin
Abstract This paper reviews the topic of Thermo-Mechanical Fatigue (TMF) as applied to automotive components such as cylinder heads, pistons, manifolds, turbochargers and exhaust components. The paper starts by looking at the physical influence of temperature on the microscopic failure of materials, in particular concentrating on the mechanisms of creep, fatigue, oxidation and their interactions. Finite Element Analysis (FEA) techniques suitable for high-temperature environments are discussed briefly, in particular the applications of elastic, elastic-plastic or elastic-viscoplastic analyses. Finally, methods for high-temperature fatigue and creep-fatigue based on the Chaboche approach are reviewed. The paper concludes with a review of laboratory tests on several materials at elevated temperatures under combined creep and fatigue conditions. Two case studies are then presented on a turbocharger housing and an exhaust-gas recirculation valve housing.
2015-04-14
Journal Article
2015-01-0547
Dengfeng Wang, Rongchao Jiang
Abstract In this paper, the dynamic stress of the front subframe of a passenger car was obtained using modal stress recovery method to estimate the fatigue life. A finite element model of the subframe was created and its accuracy was checked by modal test in a free hanging state. Furthermore, the whole vehicle rigid-flexible coupling model of the passenger car was built up while taking into account the flexibility of the subframe. Meanwhile, the road test data was used to verify the validity of the dynamic model. On this basis, the modal displacement time histories of the subframe were calculated by a dynamic simulation on virtual proving ground consisting of Belgian blocks, cobblestone road and washboard road. By combining the modal displacement time histories with modal stress tensors getting from normal mode analysis, the dynamic stress time histories of the subframe were obtained through modal stress recovery method.
2015-04-14
Journal Article
2015-01-0605
Guoyu Yang, Scott Kish
Strength and fatigue life prediction is very difficult for stamped structural steel parts because the manufacturing process alters the localized material properties. Traditional tensile tests cannot be used to obtain material properties due to size limitations. Because of this, FEA predictions are most often “directional” at best. In this paper an improved prediction methodology is suggested. With a material library developed from standard homogenous test specimens, or even textbook material property tables, localized strength and plastic strain numbers can be inferred from localized hardness tests(1). The new method, using standard ABAQUS static analysis (not commercial fatigue analysis software with many unknowns), is shown to be very accurate. This paper compares the new process FEA strength and fatigue life predictions to laboratory test results using statistical confidence intervals.
2015-04-14
Journal Article
2015-01-0601
Madhavan Manivannan, Vesselin Stoilov, Derek O. Northwood
Abstract Ferritic nitrocarburizing offers excellent wear, scuffing, corrosion and fatigue resistance by producing a thin compound layer and diffusion zone containing ε (Fe2-3(C, N)), γ′ (Fe4N), cementite (Fe3C) and various alloy carbides and nitrides on the material surface. It is a widely accepted surface treatment process that results in smaller distortion than carburizing and carbonitriding processes. However this smaller distortion has to be further reduced to prevent the performance issues, out of tolerance distortion and post grinding work hours/cost in an automotive component. A numerical model has been developed to calculate the nitrogen and carbon composition profiles of SAE 1010 torque converter pistons during nitrocarburizing treatment. The nitrogen composition profiles are modeled against the part thickness to predict distortion.
2015-04-14
Technical Paper
2015-01-0600
Marc Rosenbaum
Abstract A new generation of 3D inspection machines is now available to verify in line 3D dimensional conformity of complex parts - especially Powertrain ones - with accuracy down to 0.1 μm within manufacturing cycle time of large series. Inspecting in line 100% of production with an accuracy and at speed compatible with the most demanding part accuracy and fastest cycle time is presently already a reality for some large tier1 suppliers in Europe. Purpose of this paper is to introduce this breakthrough technology using state of the art non-contact sensing technology allied with innovative mechanics and the latest developments in 3D metrology software
2015-04-14
Technical Paper
2015-01-0596
Oliver Scholz, Nikolas Doerfler, Lars Seifert, Uwe Zöller
Abstract Polymer seals are used throughout the automobile for a variety of purposes, and the consequences of a failure of such a seal can range from annoying in case of an A/C component to catastrophic in the case of brake components. With the constantly increasing demands for these components regarding e.g. pressure, tighter tolerances or new refrigerants come more stringent requirements for ensuring surface properties according to the specification for the specific application. While automatic inspection systems are available for a variety of defects, the area of seal inspection is still dominated by manual labor, partly because handling of these small, inexpensive parts is difficult and partly because visual coverage of the entire sealing surface poses a problem. It is also difficult for a human inspector to objectively assess whether or not a surface defect is critical, especially given that inspection of each seal must be completed within a few seconds.
2015-04-14
Technical Paper
2015-01-1675
Yongfu Chen, Zhengfei Tang, Peijun Xu, Yunqing Zhang
Abstract In order to reasonably match the variable stiffness and location of the Powertrain Mounting System (PMS) and optimize the ride comfort of commercial vehicle, a thirteen degrees of freedom (DOF) model of a commercial vehicle was established in Adams/view. Specially, the support rod installed on the upside of the transmission case was modeled as a flexible body. The vibration isolation provided by the PMS was evaluated in three aspects: the energy decoupling of the powertrain, the response force of the mount and the displacement of the powertrain. The energy decoupling ratio, the force RMS of the mount when force excitation was applied on the powertrain and the displacement of the powertrain Center of Gravity (C.G) when displacement excitation was applied on the vehicle chassis were selected as the optimal target. Adams and MATLAB were integrated into the optimization software iSIGHT to optimize the PMS. NSGA-II is used to obtain some Pareto-optimal solutions of PMS.
2015-04-14
Technical Paper
2015-01-1671
Mohamed El Morsy, Gabriela Achtenova
Abstract In this paper, a fault in rolling bearing is diagnosed using time waveform analysis. In order to verify the ability of time waveform analysis in fault diagnosis of rolling bearing, an artificial fault is introduced in vehicle gearbox bearing: an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side. An optimal Morlet Wavelet Filter and autocorrelation enhancement are applied in this paper. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, autocorrelation enhancement is applied to the filtered signal.
2015-04-14
Technical Paper
2015-01-1499
Tadatsugu Takada, Kazuki Tomioka
Abstract Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
2015-04-14
Journal Article
2015-01-0146
Salah Alhasia, Sharif Gindy, Selin Arslan, Badih Jawad, Chris Riedel
Abstract As the need for super high speed components (pumps, motors, etc) continue to grow rapidly, so does the need to make measurements at speeds higher than ever before. Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. Such measurements are impossible if bearings fail to perform. This paper will address the dynamic modes a bearing passes through and the potential failure modes associated with each. A review of the state of the art of current failure modes will be given, and then a hypothesis on some new failure modes associated with particular speeds will be discussion. The paper will also describe an apparatus that was designed especially to study these phenomena. Range of speed studied is 0- 60,000 rpm.
Viewing 181 to 210 of 15767

Filter

Subtopics