Display:

Results

Viewing 121 to 150 of 19713
2016-04-05
Technical Paper
2016-01-0107
Sjon Moore
Abstract Traditional methods of costing wire harnesses focus primarily on the material and labor costs for manufacturing the final product. Rarely are costs related to variation-based complexity considered and when they are they tend to be simple approximations at best. In reality, the additional costs of excessive variation resulting in large part counts (unique harness level part numbers) can have a significant impact on the final cost incurred by an organization, and is often difficult to account for making it impossible for an organization to optimize their design, and everything that goes into making and delivering a finished product. It's important that these costs first be understood and modeled, and second that the designs be optimized based on this model. This paper will discuss these complexity based costs, including common sources, how they can be modeled, and methods for optimizing designs to account for these costs.
2016-04-05
Journal Article
2016-01-0243
Jingwei Zhu, Stefan Elbel
Abstract Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents a new two-phase nozzle restrictiveness control mechanism which is possibly applicable to two-phase ejectors used in vapor compression cycles.
2016-04-05
Journal Article
2016-01-0281
Alaa El-Sharkawy, Dipan Arora, Abd El-Rahman Hekal, Amr Sami, Muhannad Hendy
Abstract In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
2016-04-05
Technical Paper
2016-01-0801
Dimitri Seboldt, David Lejsek, Marlene Wentsch, Marco Chiodi, Michael Bargende
Abstract CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
2016-04-05
Technical Paper
2016-01-0372
Thomas Thesing, Neil Bishop
Abstract Conventional approaches for the fatigue life evaluation of automotive parts like headlamps involves the evaluation of random stress conditions in either the time or frequency domain. If one is working in the frequency domain the fatigue life can be evaluated using one of the available methods like the Rayleigh (Narrow Band) approach or the more recent Dirlik method. Historically, the random stresses needed as input to these methods have been evaluated by the FEA solver (eg Abaqus, or Nastran) and these “in built” stress evaluations have limitations which relate to the fact that the stress conditions are complex and so the common “equivalents” for stress like von-Mises or Principal have not been available. There have also been limitations in the location and method of averaging for such stresses. In addition, the fatigue calculation approach for doing the evaluation has been constrained to the linear stress based (S-N) method.
2016-04-05
Journal Article
2016-01-0506
Daisuke Tomomatsu
Abstract This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
2016-04-05
Journal Article
2016-01-0501
Seung Hoon Hong, Frank Yan, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Abstract Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
2016-04-05
Technical Paper
2016-01-0511
Na Qiu, Yunkai Gao, Jianguang Fang, Shanshan Wang
Abstract As a potential material for lightweight vehicle, polymethyl methacrylate (PMMA) has proven to perform well in optical behavior and weather resistance. However, the application in automotive glazing has seldom been studied. This paper investigates the defrost performance of PMMA rear window using both numerical and experimental methods. The finite element analysis (FEA) results were found to be in good agreement with the experimental data. Based on the validated finite element model, we further optimized the defrost efficiency by changing the arrangement of heating lines. The results demonstrated the frost layer on the vision-related region of PMMA rear window can melt within 30 minutes, which meets the requirement of defrost efficiency.
2016-04-05
Technical Paper
2016-01-0512
Chae-Hwan Hong
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
2016-04-05
Technical Paper
2016-01-0513
Yohei Miki, Hisao Futamata, Masahiko Inoue, Masashi Takekoshi, Kohbun Yamada
Abstract Unexpected noise may occur around air intake manifold when the throttle valve is quickly opened. In order to solve this problem, mesh is often mounted into the air flow between the intake manifold and the throttle body. In this study the effect of mesh design on the noise reduction was investigated. Several designs of the mesh were tested with an actual automobile and the developed test equipment taking advantage of an intake manifold unit, and the noise attenuation was discussed with measuring the noise and observation of the mesh deformation. Based on those experiments, the mesh design for noise reduction was optimized. Furthermore integration of mesh and rubber gasket was examined. Finally, rubber mesh-gaskets which provide sealing and noise attenuation for air intake has been proposed in this study.
2016-04-05
Technical Paper
2016-01-0510
Praveen Mishra, Subramanian Ganeshan
Abstract An automobile outer rear view mirror (ORVM) is fixed at the front exterior of the vehicle for helping the driver see areas behind and sides of the vehicle which are outside of their peripheral vision. Mirror Scalp is the cover which protects the components inside from human and other environmental damage. Hence the scalp must be properly designed and fitted to the rest of the assembly so that it allows the safe functioning of the ORVM, which is an active safety device. During automatic car washing, sometimes the scalp may get removed due to the huge force exerted by the scrubber, if the scalp is not fitted properly. Mirror scalp is fitted to the rest of the ORVM through snap-fits. Snap-fits are the simplest, quickest and most cost effective method of assembling two parts. When designed properly, parts with they can be assembled and disassembled numerous times without any adverse effect on the assembly and hence are most environmentally friendly.
2016-04-05
Journal Article
2016-01-0515
Jee Young Youn, Seok Hwan Kim, Yong Sun (Steven) Jin
Abstract Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
2016-04-05
Technical Paper
2016-01-0517
Kentaro Kimura, Ryoji Habuchi, Tetsuya Kono, Tadashi Mori, Kaname Arimizu
Abstract To reduce cabin noise and vehicle weight (for lower fuel consumption), a lightweight soundproofing cover was developed as a countermeasure to sources of noise, using the Biot theory (vibration propagation theory in poroelastic materials). This report also presents the results of its application to a metal belt-type continuously variable transmission (CVT) used in Toyota Motor Corporation’s 2.0L vehicles.
2016-04-05
Technical Paper
2016-01-1388
Baoke Huang, Jun Sun, Hu Wang, Xiaoyong Zhao, Qin Teng
Abstract In current design optimization of engine crankshaft bearing, only the crankshaft bearing is considered as the studying object. However, the corresponding relations of major structure dimensions exist between the crankshaft and the crankshaft bearing in engine, and there are the interaction effects between the crankshaft and the crankshaft bearing during the operation of engine. In this paper, the crankshaft-bearing system of a four-cylinder engine is considered as the studying object, the multi-objective design optimization of crankshaft bearing is developed. The crankshaft mass and the total frictional power loss of crankshaft bearings are selected as the objective functions in the design optimization of crankshaft bearing. The Particle Swarm Optimization algorithm is used in the optimization calculation. The optimization results are compared to the ones of original engine design and the single-objective design optimization of crankshaft bearing.
2016-04-05
Technical Paper
2016-01-1387
Subash Sudalaimuthu, Barry (Baizhong) Lin, Mohamed Sithik, Rajeev Sakunthala Rajendran
Abstract The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
2016-04-05
Technical Paper
2016-01-1381
Jiaqi Li, Jimin Ni, Xiuyong Shi
Abstract Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
2016-04-05
Technical Paper
2016-01-1397
Charles Yuan, Erik Kane, Abid Rahman
Abstract New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE.
2016-04-05
Technical Paper
2016-01-0011
Salah Alhasia, Sharif Gindy, Badih Jawad, Chris Riedel, Selin Arslan
Abstract Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. In high speed applications, rolling element forces and gyroscopic moments can be significantly high compared to the applied forces acting on a bearing. Such moments create a “driving” torque causing outer race to creep. In this paper a mathematical model for the dynamics of a rolling element in a high speed bearing is derived. Preload values counterbalancing the torque driving the outer race to rotate can be predicted from this model. An attempt to experimentally measure this torque using a specially designed apparatus with integrated strain gauge torque sensor is also described. Both model and experimental measurements are aimed at understanding, and therefore preventing bearing failures due to outer race (creep) rotations.
2016-04-05
Technical Paper
2016-01-0031
Wenxu Niu, Ke Song, Yucheng He, Tong Zhang
Abstract X-in-the-loop (XiL) framework is a new validation concept for vehicle product development, which integrates different virtual and physical components to improve the development efficiency. With XiL platform the requirements of reproducible test, optimization and validation, in which hardware, equipment and test objects are located in different places, could be realized. In the view of different location and communication form of hardware, equipment and test objects, time delay problem exists in the XiL platform, which could have a negative impact on development and validation process. In this paper, a simulation system of time delay prediction and compensation is founded with the help of BP neural network and RBF neural network. With this simulation system the effect of time delay in a vehicle dynamic model as well as tests of geographically distributed vehicle powertrain system is improved during the validation process.
2016-04-05
Technical Paper
2016-01-0393
Kevin P. Barbash, William V. Mars
Abstract We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
2016-04-05
Technical Paper
2016-01-0391
Tanmay Sushant Santra, Vikas Kumar Agarwal, Mihir Bhambri
This paper depict the difference in the endurance factor of safety with usage of static and quasi static FE analysis and corrective measures take to solve the problem. The importance of the dynamic loading and subsequent effect of it on the multi axial fatigue analysis. Considering the modern trend prevailing among the vehicle manufacturers and specifically talking about two wheeler industry, it is clear that while the engine remains the same but the frame is changed to cater the market with new models to cut down on the development time. Initially the crankcase was designed for a double cradle frame where the crankcase was mounted on the frame. Later, the frame design was changed to single cradle where engine acts as a stress member link. This kind of arrangement makes the crankcase mountings participate in the chassis loads. Therefore, the crankcase mounting experiences road loads when the vehicle encounter the road irregularities.
2016-04-05
Technical Paper
2016-01-0448
Yuliang Yang, Yu Yang, Ying Sun, Zhihong Dong, Yunquan Zhang
Abstract To improve the vehicle NVH performance and reduce the vibration of the exhaust system, average driving DOF displacement (ADDOFD) and dynamic analysis are used to optimize hanger locations. Based on the finite element model and rigid-flexible coupling model, exhaust system analysis model was established. According to the finite element model of the exhaust system, the free-free modal analysis is carried out, and the position of the hanging point of the exhaust system is optimized by using the ADDOFD method. Furthermore, through the dynamics analysis, the force of each hanger to the body is calculated by the dynamic analysis, then verify the rationality of the hanging position. The combination of the two methods can effectively determine the better NVH performance of the exhaust system with hanger locations in the earlier vehicle development process.
2016-04-05
Technical Paper
2016-01-0496
Leonardo Farfan-Cabrera, Ezequiel A. Gallardo
Abstract Debris are progressively generated just after wear occurred by the interaction of various mechanical elements inside the engines, steering gear boxes, transmissions, differentials, etc. Besides, debris could interfere with the normal operation of such components generating even more damage in other parts due to three-body abrasion. Hence, dynamic seals are susceptible to interact with very fine debris accumulated in the working lubes. Recently, owing to many test advantages, the micro-scale abrasion test has been extensively used to reproduce three-body abrasion in hard materials, coatings, polymers, etc., however, it has not been before employed for the wear assessment of elastomeric materials. This paper presents an adaptation of the micro-scale test method to study three-body abrasive behavior of an elastomeric dynamic seal (samples extracted from an automotive commercial Acrylonitrile-butadiene NBR rotary seal) under lubricated conditions.
2016-04-05
Journal Article
2016-01-0493
Roger Gorges, David Latham, Ian Laing, Ronald Brock
Abstract Modern High-Speed Diesel (HSD) engines place increasing demands on engine components. Specifically, for connecting rod bearings there is a requirement to endure increased peak cylinder pressures and the resulting loads transmitted through the connecting rods to the crankshaft. In addition to these high loads, the operating environment for bearings is becoming more aggressive. Reductions in oil film thickness combined with the move towards lower viscosity oils means that the seizure and wear resistance of the bearings play a crucial role in modern engine development. In order to attend to these demands, MAHLE has developed a novel high-performance polymer coating containing lubricant-filled microcapsules. The Microcapsules are designed to rupture during nascent scuff and high wear events and consequently release the contained lubricant ‘on demand’. This introduces additional lubrication when required to prevent seizure.
2016-04-05
Technical Paper
2016-01-0488
Takashi Izawa, Motohiko Koushima
Abstract In order to determine the seizure limit of the main bearings of passenger vehicles under actual operating conditions, evaluations were conducted in environments containing noise factors (Various factors which designer cannot adjust and which make function vary were defined as noise factors in this paper.) [1,2] It was shown that noise factors have an effect on seizure limit performance in relation to performance under ideal test conditions (test conditions in which no noise is present). In relation to oil properties, the results showed that a reduction in viscosity as a result of dilution affected seizure limit performance. In relation to the shape of the sliding sections of the test shaft, seizure limit performance declined in a shaft in which the central section was swollen (“convex shaft” below).
2016-04-05
Journal Article
2016-01-0485
Jiaqi Li, Jimin Ni, Qiwei Wang
Abstract Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
2016-04-05
Technical Paper
2016-01-0473
Muthukumar Arunachalam, S Arunkumar, PraveenKumar Sampath, Abdul Haiyum, Beverly Katz
Abstract Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
2016-04-05
Technical Paper
2016-01-0837
Per A. Risberg, Sara Alfredsson
Abstract A problem for the diesel engine that remains since its invention is injection nozzle hole fouling. More advanced injection systems and more complex fuels, now also including bio-components, have made the problem more intricate. Zinc and biodiesel have often been accused of being a big part of the problem, but is this really the case? In this study, nozzle fouling experiments were performed on a single cylinder engine. The experiments were divided in three parts, the first part studied the influence of zinc neodecanoate concentration on nozzle hole fouling, the second part studied the effect of neodecanoates of zinc, sodium, calcium, copper, and iron on fuel flow loss and in the last part it was examined how RME concentration in zinc neodecanoate contaminated petroleum diesel affected nozzle hole fouling propensity. After completed experiments, the nozzles were cut open and the deposits were analyzed in SEM and with EDX.
2016-04-05
Technical Paper
2016-01-0839
Wenbin Yu, Wenming Yang, Balaji Mohan, Kunlin Tay, Feiyang Zhao, Yunpeng Zhang, Siawkiang Chou, Markus Kraft, Malcolm Andrew Alexander, Alfred Yong, Kwokhow Lou
Abstract In this study, the internal nozzle flow and macroscopic spray characteristics of a kind of wide distillation fuel (WDF) - kerosene were investigated both with numerical and experimental approaches. Simulation results indicate that compared with diesel fuel, kerosene cavitates more due to higher turbulent kinetic energy as a result of lower viscosity. The results from experiment indicate that under lower charge density, the spray penetration for kerosene is obviously shorter than that for diesel, especially for the lower injection pressure. This is because lower fuel viscosity results in a reduction in the size of the spray droplets, leading to lower momentum. However the spray angle of kerosene is larger compared with diesel due to stronger turbulence in the nozzle flow caused by increased cavitation for kerosene, which also accords well with the simulation results.
2016-04-05
Technical Paper
2016-01-0863
Alessandro Montanaro, Luigi Allocca, Maurizio Lazzaro, Giovanni Meccariello
Abstract In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
Viewing 121 to 150 of 19713

Filter

Subtopics