Display:

Results

Viewing 31 to 60 of 15095
Technical Paper
2014-04-01
Mehdi Safaei, Shahram Azadi, Arash Keshavarz, Meghdad Zahedi
Abstract The main end of this research is the optimization of engine sub-frame parameters in a passenger car to reduce the transmitted vibration to vehicle cabin through DOE method. First, the full vehicle model of passenger car including all its sub-systems such as engine, suspension and steering system is modeled in ADAMS/CAR and its accuracy is validated by exerting swept sine and step input. After that, the schematic geometry of sub-frame is modeled in CAD software and transferred to ADAMS/CAR. Hence, the efficiency of the sub-frame in terms of reducing the induced vibration to vehicle cabin is examined through the various road inputs e.g. swept sine, step and random road input type (B). The results will illustrate that the sub-frame has significant effect in reduction of transmitted vibration to occupants. In order to optimize the sub-frame parameters, the sensitivity analysis is performed to derive effective parameters of sub-frame using DOE method. In this regard, the parameters which have dominant effect on transmitted vibration (the stiffness of sub-frame bushing in vertical direction) are optimized via RSM (Response Surface Method) method.
Technical Paper
2014-04-01
Sameer U. Kolte, David Neihguk, Abhinav Prasad, Samir Rawte, Aditya Gondhalekar
Abstract A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®. Further, for the given torque input, the harmonic response of the powertrain mounted on optimized mounts, is evaluated for comparison with NVH targets.
Technical Paper
2014-04-01
Shigenori Ichinose, Kiyoshi Iwade, Yoshiharu Hata
Abstract The oil flow in the oil ring groove was observed in order to improve the oil ejection efficiency in the oil ring groove. The oil flow was visualized with a clear head piston using fluorescing agent and particles under motoring condition. The influences of oil ring specification on the direction and the velocity of the oil flow were evaluated. The velocity of the oil ring with oil vent holes was faster than that of the oil ring without oil vent holes. In the case of the oil ring with vent holes, the reverse flow of the oil toward the front side was observed in the back clearance. Therefore, oil vent holes can change the oil flow and improve the oil ejection efficiency in the oil ring groove.
Technical Paper
2014-04-01
Guenter Bischof, Karl Reisinger, Thomas Singraber, Andreas Summer
In this work, we investigate the rotor bearing loads of a flywheel-based KERS that are caused by dynamic forces and gyroscopic torques during representative driving maneuvers. Based on the governing equations of motion of a gyroscope, the equations for the rotor-platform interactions are developed. These equations, which relate the vehicle's roll, pitch and yaw rate with the internal transverse torques on the flywheel, are integrated into a commercial vehicle dynamics program. An average passenger car model equipped with a typical high-speed flywheel energy storage system is used for the numerical investigations. The flywheel bearing loads produced by some selected, representative driving maneuvers are simulated for different orientations of the flywheel spin axis relative to the body frame. In addition, the dynamic response of the vehicle to the reaction torques is investigated in open and closed-loop vehicle dynamics simulations. Thus, the steering response of a driver model to the gyrodynamics of a flywheel-based KERS is obtained for fully charged KERS as well as during braking and under acceleration boosts.
Technical Paper
2014-04-01
Christian Scheiblegger, Nantu Roy, Orlando Silva Parez, Andrew Hillis, Peter Pfeffer, Jos Darling
Abstract Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation. To improve bushing modeling of cab/box mounts for heavy duty/light duty trucks, a practical approach to model non-linear bushing dynamic characteristics has been tested and validated against standard bushing models.
Technical Paper
2014-04-01
Pierre Marquette, Arnaud Dereims, Michael Hugon, Guenael Esnault, Anthony Pickett, Dimitrios Karagiannis, Apostolos Gkinosatis
Abstract Today, LRI is a proven manufacturing technology for both small and large scale structures (e.g. sailboats) where, in most cases, experience and limited prototype experimentation is sufficient to get a satisfactory design. However, large scale aerospace (and other) structures require reproducible, high quality, defect free parts, with excellent mechanical performance. This requires precise control and knowledge of the preforming (draping and manufacture of the composite fabric preforms), their assembly and the resin infusion. The INFUCOMP project is a multi-disciplinary research project to develop necessary Computer Aided Engineering (CAE) tools for all stages of the LRI manufacturing process. An ambitious set of developments have been undertaken that build on existing capabilities of leading drape and infusion simulation codes available today. Currently the codes are only accurate for simple drape problems and infusion analysis of RTM parts using matched metal molds. Furthermore, full chaining of the CAE solution will allow results from materials modeling, drape, assembly, infusion and final part mechanical performance to be used in subsequent analyses.
Technical Paper
2014-04-01
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation. In this paper, a new method is proposed in which the structure borne noise associated with powertrain is quantified easily and reliably.
Technical Paper
2014-04-01
Wei Yang, Wenku Shi, Chunxue Chen
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Technical Paper
2014-04-01
Ralph S. Shoberg, Jeff Drumheller
Abstract Reliable wheel attachment must start with proper tightening of the lug nuts in order to achieve the clamping force necessary to hold the vehicle's wheels securely for all operating conditions. It is the purpose of this paper to provide a complete overview of the theory and practice of using torque-angle signature analysis methods to examine the installation and audits of wheel lug nuts. An accurate estimate of clamp load can be determined without actually measuring the clamp load. The torque-angle signature analysis, known as “M-Alpha”, performed on tightening and loosening curves provides a powerful tool to understand the integrity of a bolted joint when clamp load data is not available. This analysis technique gives insight into the frictional effects, material properties, and geometric factors that can affect the clamp load attained during the installation process.
Technical Paper
2014-04-01
Rahul Shashikant Patil
Abstract The tailgate is the fifth or the rearmost door of an SUV (Sports Utility Vehicle)[1]. It can be side opening or top opening. It is attached to the BIW (Body In White) with two hinge arrangement. The hinges are designed to take the cantilever load of a normal side opening tailgate along with the passenger ingress/egress load. This means that apart from the doors own weight, the hinges have to take the extra load which a passenger exerts on it by resting his/her forehand on the handle. The hinges are designed to take these loads and under normal circumstances, they do not fail for acceptable number of cycles of opening and closing of the tailgate. But in case of an armored vehicle side opening tailgate, it is quite a challenge for the normal hinges to take the heavy load of the tailgate along with passenger ingress / egress load. The normal hinges (Refer figure-1) obviously fail under such heavy loads either in their design or material configuration. To take this extra load, designers had to think of an innovative arrangement/concept that was simple yet convenient from retrofitting point of view on an armored vehicle configuration.
Technical Paper
2014-04-01
Sangil Kim, Seungwoo Seo, ChungHwa Jung, SeungHyun Baek, ChangGi Ha, KiRyun Ahn, MunBae Tak
Abstract Recently, the demand for improving the merchantability of hood open system has been increasing. A novel concept hood open system was proposed by Hyundai Motor Company (HMC) in 2012, which was based on a two-step open latch mechanism. The new hood opening mechanism satisfies Safety laws and improves merchantability.
Technical Paper
2014-04-01
Subrata Sarkar, Kailash Golecha, Surbhi Kohli, Vaughn Mills, Mustafa Huseyin, Pritam Bhurke, Stefan Walter, Ravikumar S. Dinni, Shrikrishna Jaywant Deshpande
Abstract The primary objective of this study was to provide an efficient system solution for the removal of fuel from an Active Drain Liquid Trap (ADLT), used in automotive vent systems; using a Jet Pump. The Voice of Customer was collected and analyzed. The two major focus areas identified were - improvement in robustness of Jet Pump performance and maximization of induced flow. Robust design of such a Jet Pump was carried out using Taguchi's Orthogonal Crossed Array based parameter design, through computer simulation. Two Jet Pumps were designed for Gasoline based vehicles; one with the conventional approach and the other with the robust design approach. Both were put on a field trial, integral with the vent system. The robust design showed a tremendous improvement in performance over the conventional design, due to the elimination of cavitation and insensitivity to noises.
Technical Paper
2014-04-01
Zhibin Quan, Zhiqiang Gao, Qigui Wang, Xiao Wen, Yucong Wang, Bowang Xiao
Abstract Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Technical Paper
2014-04-01
Jingru Bao, Yi Ding, Sibo Hu, Ping Hu
As one of the most important auto-body moving parts, door hinge is the key point of door design and its accessories arrangement, also the premise of the door kinematic analysis. We proposed an effective layout procedure for door hinge and developed an intelligent system on CATIA CAA platform to execute it. One toolbar and five function modules are constructed - Axis Arrangement, Section, Parting Line, Kinematic, Hinge Database. This system integrated geometrical algorithms, automatically calculate the minimum clearances between doors, fender and hinges on sections to judge if the layout is feasible. As the sizes of the clearances are set to 0s, the feasible layout regions and extreme start/end points are shown in parts window, which help the engineer to check the parting line and design a new one. Our system successfully implemented the functions of five modules for the layout of door hinge axis and parting line based on a door hinge database. An instance is carried out and the result shows that our system has great feasibility and validity to arrange the door hinge and shorten the design periods.
Technical Paper
2014-04-01
Yinhong Liu, Dazhong Lao, Yixiong Liu, Ce Yang, Mingxu Qi
Abstract Variable nozzle turbine (VNT) adjusts the openings of its nozzles to insure the required flow at throat area, which broadens the operating range of the turbine, and improves the matching relationship between the turbocharger and the engine. But the changes of nozzle openings have significant influence on the flow field structure of downstream radial turbine. To evaluate this effect, the leakage flow through nozzle clearance in various nozzle openings were simulated by unsteady computational fluid dynamic (CFD). Meanwhile, the interaction between nozzle clearance leakage flow and nozzle wake were investigated to reveal its effects on aerodynamic losses and forced responses for downstream rotor. The results showed that the changes of nozzle openings not only affect the interaction between nozzle leakage flows and wake significantly, but also affect aerodynamic performance of the rotor and the blade forced response. With the decreases of nozzle openings, the nozzle leakage flow increases and the interaction between nozzle leakage flow and wake enhances.
Technical Paper
2014-04-01
John Morello
Abstract As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts. Some are more effective than others, and all have their drawbacks.
Technical Paper
2014-04-01
Norihiro Hamada, Kiyohiro Suzuki
Abstract ADC12 is one of the common aluminum alloys for automobiles because it has suitable for casting and machining. However, the corrosion resistance of ADC12 is insufficient in comparison with other aluminum alloys. The corrosion depends on chemical composition of aluminum and circumstance around aluminum. It was considered that a crevice such as a seal gap accelerates corrosion rate. Therefore, the corrosion at a sealing gap between ADC12 and rubber gasket was investigated. Salt water corrosion tests were carried out with an o-ring compressed between ADC12 plate and plastic plate. Corrosion depth and corrosion area at sealing surface were measured with a microscope. The corrosion depth at the sealing surface was deeper than that outside it. Since smooth surface of aluminum prevented the sealing surface from corrosion, it was considered that the narrow sealing gap enabled to decrease in the corrosion rate.
Technical Paper
2014-04-01
Yannick Baubet, Carl Pisani, Phil Carden, Lex Molenaar, Adam Reedman
Rolling element bearings are known to give reduced friction losses when compared to the hydrodynamic bearings typically used to support the crankshaft in multi-cylinder engines. This paper describes the design, manufacturing and testing of a modified 4 cylinder light duty Diesel production engine with rolling element bearings applied at the crankshaft main bearings in view of CO2 emission reduction. Selection of the most suitable type of roller bearings for this specific application was made. Technology development through multi-body dynamic simulation and component testing was done to assess the effect on rolling elements performance due to the key challenges inherent to such bearing solution: high instantaneous combustion load, lubrication with low viscosity and contaminated oil, and the cracking process to split the bearing outer raceway. Compared to the baseline production engine with hydrodynamic bearings, a clear cranktrain friction reduction (−58% at ambient and −30% at 90°C) was measured under motored conditions.
Technical Paper
2014-04-01
Kenji Matsumoto, Yuki Ono, Yoichi Kojima
In order to maintain the performance of push belt Continuously Variable Transmissions (CVT) over a long period of time, it is important to acquire a fundamental understanding of lubrication performance between a pulley and a metal V-belt. This work examined oil film thickness using the contact pressure on a sliding surface of pulley sheave during driving, which was obtained with an uniquely developed measurement technique. The contact between a belt element and a pulley sheave was treated as a group of small elliptical contact zones. The pressure-viscosity characteristics of lubricant were assigned to Reynolds equation with Roelands experimental formula. Also, in order to increase convergence of the calculation, a multigrid method was used. Calculation results indicate that the oil film thickness at a peak contact pressure measured was approximately 0.3-0.4 μm.
Technical Paper
2014-04-01
Mathieu Picard, Camille Baelden, Tian Tian, Takayuki Nishino, Eiji Arai, Hiroyuki Hidaka
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow. Simulation with housing transverse waviness shows that increasing spring force can lead to an unexpected increase in internal oil consumption.
Technical Paper
2014-04-01
Laurence Claus, Stephan Weitzel
Abstract As automotive technology rapidly provides advances in lighter weight designs and materials, the technology to fasten and join them must keep pace. This paper will explore two uniquely different fastening technologies that are being used to address some of today's demanding application challenges in plastics and thin steel and aluminum sheet. These are two areas of application that have historically provided few good options for designers, especially as they attempt to push the envelope with progressive, light weight designs. The first technology is self- tapping screws for plastics that, although not new, are now evolving to enable smaller bosses and shorter thread engagements, and incorporate light weight design options. Although dependent on the demands of the application, these screws can be produced in both steel and, now, lighter weight materials such as aluminum and plastic. The paper will explore how these technologies can be employed by the designer to obtain desired weight reduction initiatives over more conventional threaded fasteners for fastening plastic.
Technical Paper
2014-04-01
Akihiro Honda, Motoichi Murakami, Yuichiro Kimura, Katsuhiro Ashihara, Shinichi Kato, Yuichiro Kajiki
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction. Consequently, the friction reduction effect was less than that predicted by the lubrication calculation.
Technical Paper
2014-04-01
Akihiro Kose, Motohiko Koushima, Tomohiro Ukai, Yuki Kawashima, Kouji Zushi
Abstract With increased awareness of environmental issues and regulations, developments for recent automotive engines are progressing towards engines with low fuel consumption. Due to these changes, automotive engine bearings are increasingly used in harsher environments, with higher loading. These operating conditions require bearings with both conformability and fatigue resistance. From the above background, various aluminum alloy bearings have previously been developed, including materials with solid solution treatment to improve their properties, and alloys which can be used with or without an overlay [1, 2, 3]. These materials are known to have good conformability and fatigue resistance. However, while conventional Al-Sn-Si alloy bearings display excellent sliding properties, due to the unceasing trend for engine downsizing, more conformability is required. In this study, by optimizing dispersion of the soft tin phase in Al-Sn-Si alloys, a bearing material with equal fatigue resistance and further improved conformability was developed.
Technical Paper
2014-04-01
Toshiyuki Chitose, Shu Kamiya, Yasunori Kabeya, Toru Desaki
Abstract In recent years, engines equipped with idle reduction system for fuel saving have been increased in Europe and Japan. Because of the start-stop frequency increase, correspondingly crankshaft and engine bearing contacts also increase. The friction between shaft and bearing is significant to reduce fuel consumption, and besides it, engine bearing wear tends to increase. Therefore, lower friction with small wear engine bearings are expected. In this paper, new developed engine bearing with solid lubricant overlay and its frictional and wear properties are reported (1). As experimental result, a bearing with MoS2 solid lubricant contained polyamide-imide resin coated overlay proved 40% less coefficient of friction, 25% less starting torque and 65% less bearing wear against conventional aluminum alloy bimetal bearing without overlay under close to the start-stop lubrication conditions by testers. Also diesel engine bench test proved less FMEP.
Technical Paper
2014-04-01
Federico Brusiani, Gian Marco Bianchi, Stefania Falfari, Angelo Onorati, Tommaso Lucchini, Rita Di Gioia
Abstract Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit. The adopted simulation strategy was previously validated against experimental data.
Technical Paper
2014-04-01
Mark A. Shost, Ming-Chia Lai, Bizhan Befrui, Peter Spiekermann, Daniel L. Varble
Abstract Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole length over diameter ratio (l/d) and fuel injection pressure on spray skew angle, spray plume cone angle and primary breakup length.
Technical Paper
2014-04-01
Robert V. Petrach, David Schall, Qian Zou, Gary Barber, Randy Gu, Laila Guessous
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model. Results show tensile residual stresses induced by the coating have a negative impact on the bearing performance indicated by the increase in subsurface localized plastic strains.
Technical Paper
2014-04-01
David Greif, Wilfried Edelbauer, Jure Strucl
Abstract The paper addresses aspects of modeling cavitating flows within high pressure injection equipment while considering the effects of liquid compressibility. The presented numerical study, performed using the commercial CFD code AVL FIRE®, mimics common rail conditions, where the variation in liquid density as a function of pressure may be relevant owing to very high pressure injection scenarios. The flow through the injector has been calculated and the conditions at the outlet of the nozzle orifice have been applied as inlet condition for subsequent Euler-Lagrangian spray calculations to investigate the effects of liquid compressibility treatment on spray propagation. Flows of such nature are of interest within automotive and other internal combustion (IC) related industries to obtain good spray and emissions characteristics. In the development process of the injection equipment, predictive methods using Computational Fluid Dynamics (CFD) contribute to lower development costs, improved engine efficiency, decreased emissions and nevertheless shorter development cycles.
Technical Paper
2014-04-01
Qingluan Xue, Michele Battistoni, Sibendu Som, Shaoping Quan, P. K. Senecal, Eric Pomraning, David Schmidt
Abstract This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas. Simulations were performed in three dimensions and the data for validation were obtained from the x-ray radiography measurements Kastengren et al. [3] at Argonne National Laboratory for a diesel fuel surrogate n-dodecane.
Technical Paper
2014-04-01
Michele Battistoni, Qingluan Xue, Sibendu Som, Eric Pomraning
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics. Needle radial motions are based on high-speed X-ray phase-contrast imaging collected at Argonne National Laboratory.
Viewing 31 to 60 of 15095

Filter

  • Article
    38
  • Book
    20
  • Collection
    4
  • Magazine
    234
  • Technical Paper
    5028
  • Subscription
    1
  • Standard
    9770

Subtopics