Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 5052
2015-01-01
Technical Paper
2014-01-9101
Susan Sawyer-Beaulieu, Edwin K.L. Tam
Abstract Life-cycle assessments (LCAs) conducted, to date, of the end-of-life phase of vehicles rely significantly on assumed values and extrapolations within models. The end phase of vehicles, however, has become all the more important as a consequence of increasing regulatory requirements on materials recovery, tightening disposal restrictions, and the rapid introduction of new materials and electronics, all potentially impacting a vehicle's efficacy for achieving greater levels of sustainability. This article presents and discusses selected research results of a comprehensive gate-to-gate life-cycle-inventory (LCI) of end-of-life vehicle (ELV) dismantling and shredding processes, constructed through a comprehensive and detailed case study, and argues that managing and implementing creative dismantling practices can improve significantly the recovery of both reusable and recyclable materials from end-of-life vehicles. Although the amount of parts and materials recovered and directed for reuse, remanufacturing or recycling may be as much as 11.6% by weight of the ELVs entering a dismantling process [1], greater rates of reuse and/or recycling may be achieved by the strategic management of the ELVs entering the dismantling process according to age.
2014-11-11
Technical Paper
2014-32-0026
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Abstract Nowadays the challenge in design of auxiliary devices for automotive small engines is focused on packaging reduction and on the increase of the performance. These requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.A. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat-to-flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses. A calculation procedure has been set up in order to consider all the necessary loads applied on the joint.
2014-10-13
Technical Paper
2014-01-2721
Robert H. Barbour, Robert Quigley, Avtar Panesar
Abstract Diesel powered vehicles have grown in popularity over the last 15 years due to the introduction of advanced, high pressure, direct injection fuel systems that enable improved emissions, power and a more desirable driving experience. However, such vehicles only perform optimally when the fuel system is in a clean condition. When deposits form inside the injector nozzle holes, a measurable deterioration in power is observed. The CEC F-98-08 Peugeot DW10 engine test was introduced in 2008 in order to evaluate the nozzle fouling propensity of fuels and the beneficial effect of deposit control additives. Papers have been published demonstrating such effects, in particular the propensity of zinc and biodiesel contaminants to cause injector fouling and the performance of additives in both deposit control (keep clean) and removal (clean-up) modes. While running such tests with an advanced, proprietary deposit control additive, both the fuel flow (kg/hr) and engine power (kW) measured with the additised fuel were higher than the corresponding measurements made at the start of test with clean injectors running on base fuel.
2014-10-13
Technical Paper
2014-01-2700
Fredrik Königsson, Per Risberg, Hans-Erik Angstrom
Abstract Nozzle coking in diesel engines has received a lot of attention in recent years. High temperature in the nozzle tip is one of the key factors known to accelerate this process. In premixed CNG-diesel dual fuel, DDF, engines a large portion of the diesel fuel through the injector is removed compared to regular diesel operation. This can result in very high nozzle temperatures. Nozzle hole coking can therefore be expected to pose a significant challenge for DDF operation. In this paper an experimental study of nozzle coking has been performed on a DDF single cylinder engine. The objective was to investigate how the rate of injector nozzle hole coking during DDF operation compares to diesel operation. In addition to the nozzle tip temperature, the impact of other parameters on coking rate was also of interest. Start of injection, λ, diesel substitution ratio and common rail pressure were varied in two levels starting from a common baseline case, resulting in a total of 10 operating cases.
2014-10-13
Technical Paper
2014-01-2743
Luca Marchitto, Simona Merola, Cinzia Tornatore, Gerardo Valentino
Abstract Alcohols are largely used in spark-ignition (SI) engines as alternative fuels to gasoline. Particularly, the use of butanol meets growing interest due to its properties that are similar to gasoline, if compared with other alcohols. This paper aims to make a comparative analysis on the atomization process of gasoline and n-butanol fuel injected by a multi-hole injector nozzle for spark ignition engines. Phase Doppler Anemometry technique was applied to investigate the behavior of a spray emerging from a six-hole nozzle for direct injection spark ignition engine applications. Commercial gasoline and pure n-butanol were investigated. The fuels were injected at two pressures: namely at 5 and 10 MPa, in a test vessel at quiescent air conditions, ambient temperature and backpressure. Droplets diameter and velocity were estimated along the axis and on the edge direction of a jet through Phase Doppler Anemometry in order to provide useful information on the atomization process. Gasoline and n-butanol provided different results in droplets size and velocity.
2014-10-13
Technical Paper
2014-01-2850
Yingyi Wen, Shunichi Oshima
Agitation torque associated with oil lubricant is one important factor of torque loss in bearings under sufficient lubricating conditions. So far, efforts on reducing agitation torque were taken mostly by means of conventional experimental trials. Aiming for speedy, low-cost development, a calculation program for predicting the amount of agitation torque and oil distribution tendency in rolling bearings has been developed using computational fluid dynamics (CFD) analysis. At first, since rolling bearings are axially symmetric, sector models of bearings were adopted. To verify the method, torque losses and oil quantities in ordinary-sized bearings have been measured. Calculated values based on sector models are qualitatively in good agreement with measured results. The difference between the absolute values of measured and calculated torque may be caused by the difference between the vertical model used in CFD analysis and the horizontal torque-testing rig used in measurement. To improve the accuracy, full models of the bearings have been developed and verified by experiment.
2014-10-13
Technical Paper
2014-01-2745
Markus Behringer, Pavlos Aleiferis, Dave OudeNijeweme, Paul Freeland
Abstract One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit. The droplet measurements were grouped into bins and maps were created showing droplet sizes and velocities against time and position during and post injection.
2014-09-30
Technical Paper
2014-01-2351
Meng-Huang Lu, Figen Lacin, Daniel McAninch, Frank Yang
Abstract Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows. For a low-pressure (less than 6 bar) injector application, the characteristic Reynolds number based on the diameter and mass flow rate of the inlet, return flow outlet, and nozzle exit of the injector might range from 2000 to 20000, therefore, employing a flow-physics based viscous model for building up a virtual test methodology is critical to properly capture the fluid dynamics of injector internal nozzle flow.
2014-09-30
Technical Paper
2014-01-2330
Matt Zwick
Abstract The base design of commercial vehicle wheel end systems has changed very little over the past 50 years. Current bearings for R-drive and trailer wheel end systems were designed between the 1920's and the 1960's and designs have essentially remained the same. Over the same period of time, considerable gains have been made in bearing design, manufacturing capabilities and materials science. These gains allow for the opportunity to significantly increase bearing load capacity and improve efficiency. Government emissions regulations and the need for fuel efficiency improvements in truck fleets are driving the opportunity for redesigned wheel end systems. The EPA and NHTSA standard requires up to 23% reduction in emissions and fuel consumption by 2017 relative to the 2010 baseline for heavy-duty tractor combinations. This paper summarizes the history of current wheel end bearing designs and the opportunity for change to lighter-weight, cooler-running and more fuel-efficient wheel bearing designs to help meet the new industry standards.
2014-09-28
Technical Paper
2014-01-2492
Sukumar T, Murugan Subramanian
Abstract This paper presents a systematic procedure for design and evaluation of snap fit for Quadruple System Protection Valve (QSPV) piston assembly. The QSPV piston is assembled with housing by means of snap joint. Snap joints are a very simple, economical and rapid way of joining two different components. All types of snap joints have in common the principle that a protruding part of one component, e.g., a hook, stud or bead is deflected briefly during the joining operation and catches in a depression (undercut) in the mating component. After the joining operation, the snap-fit features should return to a stress-free condition. The joint may be separable or inseparable depending on the shape of the undercut; the force required to separate the components varies greatly according to the design. It is particularly important to bear the following factors in mind when designing snap joints: Mechanical load during the assembly operation and force required for assembly.
2014-09-16
Technical Paper
2014-01-2268
Pietro Ladisa, Gabriele Santonico
Abstract The marman interface is widely used in space applications to fit the spacecrafts to the launch vehicle and it is the same interface that allows the integration, test and transport of the satellites (AIT). It is usually designed for launch loads with related flight design safety factors and margins, but this is not always compatible with the handling and transport environment. In particular some criticalities are evidenced during the transport of satellites, where they are mounted in the container in horizontal position therefore subjected to bending loads due to gravity and transport dynamic loads. The study deals with a finite element analysis approach in the calculation and verification of marman clamp bands used for spacecraft AIT operations. The paper describes the details of modeling of the clamp band parts, the involved spacecraft launch vehicle interface ring and the MGSE interface. All these parts are in contact and this configuration has been modeled adopting the most recent non linear contact analysis techniques.
2014-09-16
Technical Paper
2014-01-2242
Samuel Baha II
Hybrid (bolted/bonded) joining is becoming one of the innovative joining processes for light weight structures in the transport industry, especially in the aerospace industry where weight reduction and high joining requirements are permanent challenges. Combining the adhesive bonding with the mechanical joining -riveting for instance- can lead to an enhancement of the properties of the joint compared to the wide established riveting, as a result of a synergistic load bearing interaction between the fastener and the adhesive bondline. The influence of the rivet installation process on a hybrid joint regarding the joint stress state, the change of the bondline thickness as well as its effects on the joint performance and load transfer are some of the factors that drive the users to a better understanding of the hybrid joining process. This paper deals therefore on one hand with the numerical simulation of the rivet installation process in an adhesively bonded joint to understand the phenomena occurring during the installation process and on the other hand with the investigation of the load transfer depending on the joint parameters.
2014-09-16
Technical Paper
2014-01-2241
Jamie Skovron, Laine Mears, Durul Ulutan, Duane Detwiler, Daniel Paolini, Boris Baeumler, Laurence Claus
Abstract A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat. The friction drilling, thread forming process, hereto referred to as “FDS” is an automated continuous process that allows multi-material joining by utilizing a screw as both the tool and the fastener.
2014-09-16
Technical Paper
2014-01-2263
Eric Barton, Dan Hasley, Joey Jackson
Abstract The following is a unique case study expounding on automatic fastening technology designed and engineered to ramp up a Tier 2 supplier that had no experience with automatic fastening, to efficiently produce a large volume of fuselage panel assemblies with demanding process requirements in a very short amount of time. The automation technology integrated for the skin to stringer & skin to window frame fastening were two GEMCOR G12 five-axis CNC All-Electric fastening systems coupled with a Cenit offline part programming system. This joint solution served as a launch vehicle for Center Industries to efficiently supply the full rate of fuselage panel assemblies for a large volume commercial aircraft program without having any automatic riveting experience. The aero structure sourced to Center Industries has tight manufacturing tolerances & quality requirements without room for error or scrap whereby Drivmatic® fastening with CNC positioning and offline part programming was the feasible approach.
2014-09-16
Technical Paper
2014-01-2144
Marco Amrhein, Jason Wells, Eric Walters, Seana McNeal, Brett Jordan, Peter Lamm
Abstract Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings). This article investigates the aforementioned stress mechanisms and provides analysis techniques and metrics to quantify the impact of transient operating conditions onto system and component reliability and life.
2014-06-30
Technical Paper
2014-01-2063
Farokh Kavarana, Kin Yu, Tyler Robbins, John DeYoung
Abstract The advantages of hydraulic mounts over conventional elastomeric mounts for NVH refinement are well known, particularly in the area of engine and suspension mounts. Recently, hydraulic mounts have been successfully employed as body mounts between the frame and cab, principally to control freeway hop in pickup trucks. Due to their ability to provide increased damping at small displacements, hydraulic body mounts also have good potential to reduce smooth road shake. This paper documents the reduction in smooth road shake performance of a full size pickup truck. Hydraulic body mounts tuned to the frequency of the smooth road shake sensitivity area were added to the rearmost cab mount location. Both tire-wheel balance and uniformity were set to the highest production level specification allowed and the effect of hydraulic cab mount was measured experimentally during smooth road driving at medium to high speeds. Hydraulic body mounts were found to be successful in reducing smooth road floor shake by up to 6 dB, thereby considerably refining the vehicle vibration due to first order tire-wheel input forces.
2014-05-07
Technical Paper
2014-36-0024
Marcos dos Santos, Ricardo Guedes Manini, Jayme B. Curi, Cleber Chiqueti
Abstract ”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension. To have a shortest development time and provide back an expected result from the suspension system, engineers should to consider more and new assumptions, evaluate virtual and practical performance of leaf-springs with “U” bolt designed to clamp all elastic joint and even the correct torque specification to the “U” bolt.
2014-04-28
Technical Paper
2014-28-0041
A. R. Kumbhar, S. A. Kulkarni, J. M. Paranjpe, N. V. Karanth
Abstract New process development of forging component require lot of process knowledge and experience. Even lots of trial-and-error methods need to be used to arrive at optimum process and initial billet dimensions. But with help of reliable computer simulation tools, now it is possible to optimize the complete process and billet dimensions without a single forging trial. This saves lot of time, energy and money. Additionally, simulation gives much more insight about the process and possible forging defects. In this paper, a complete forging process was needed to be designed for a complex component. With the help of computer simulation, the complete conventional forging process and modified forging process were simulated and optimized. Forging defects were removed during optimization of the process. Also billet weight optimization was carried out. Deciding the pre-forming shape of the billet was the main challenge. With use of computer simulation, an innovative pre-forming shape was arrived resulting in reducing billet input weight.
2014-04-28
Technical Paper
2014-28-0037
Shreyas Shingavi, Pankaj Bhirud, M. Nagi Reddy, Darshan Mishal
Abstract In Automotive world, different types of shield are used to safe guard the assembly from dirt and dust. These can deteriorate the performance and functioning of systems. Typically the dirt shields are not load carrying members, so preferred to have low gauges and low weight. Dirt shield has to cover many subassemblies, so it has intricate shape as well. Due to low gauge and complicated shape, the manufacturing of these shields becomes challenging in terms of maintaining assembly tolerances. In order to overcome these concerns, concurrent design approach is used. Using this approach manufacturing process of the parts is virtually simulated and residual stresses, strains, permanent set, spring back effect are evaluated. These results are cascaded to assembly load analysis, and results are monitored for deflections. Based on these results various interferences during actual assemblies or failure during assemblies like flushness can be predicted well in advance and design correction can be carried out at very early stage, resulting lower product development cost and time.
2014-04-28
Technical Paper
2014-28-0035
Shiva Kumar Manoharan, Christoph Friedrich
Abstract Self-loosening of bolted connections is a crucial failure mode for joints under transverse dynamic load. For some years, three dimensional finite element analysis has been enabled for avoiding experimental investigations of self-loosening. The aim of this paper is to emphasize the effect of joint design on the self-loosening of bolted connections, which is important for product development in early design stage. Joints consisting of internally threaded nut components are often heavier and stiffer as compared with light weight designs consisting of a separate nut. The difference of self-loosening is significant between arrangements with nut thread component and separate nut, although the design versions only contain slight modifications. Hence it is necessary to evaluate the effect of light weight design on self-loosening.
2014-04-28
Technical Paper
2014-28-0013
Ingrid Rasquinha, Reji Koshy Daniel
Abstract Environment, energy and safety concerns for vehicles have made improving strength-to-weight ratio of vehicles an imperative issue for the automobile industry. Tube hydroforming (THF) is an innovative forming technology, which can efficiently reduce the weight of a component or assembly, and at the same time, increase the part strength. THF produces parts with a high degree of part complexity (various cross-sections in a single piece) and dimensional stability. Tube hydroforming involves the expansion and sizing of tubes in a closed die under dynamic action of pressurized fluid, with simultaneous axial or radial compression. Best forming results can be achieved by the optimized combination of process parameters (internal pressure, feed, friction, load, blank thickness) and material properties (yield strength, tensile strength, n-value, r-value, elongation).With the help of case studies, this thesis presents how tube hydroforming has been used to shave mass off some conventionally produced auto components like chassis cross-members, trailing arms, crash members and exhaust housings.
2014-04-28
Technical Paper
2014-28-0010
Saral Bhanshali
Abstract This breakthrough development involves material conversion from aluminum die cast to polypropylene long fiber thermoplastic (40% long glass filled) for a two wheeler bracket of a leading automotive OEM. The plastic bracket was developed working in collaboration with the molder, glass supplier, technology collaborator and the OEM. The new part needed to be designed lighter in weight, easier to process and suitable for painting, outdoor exposure and stringent dynamic conditions. The scope of this study includes the evaluation of the new material from different viewpoints and comparison of the same with the existing material. The submission will go through the intricate analyses carried out in the development process and highlight the key advantages over aluminum. Studies will include static and dynamic analysis, fiber orientation studies, gate location studies, etc.
2014-04-28
Technical Paper
2014-28-0021
M. J. Rathod, H. A. Deore
Abstract Desired mechanical properties including wear resistance at affordable price are the key parameters for which ductile cast irons are widely selected. Particularly, in many automobile applications like brake cylinders, camshafts, connecting rods, gears, pistons and yokes ductile iron is used. Traditionally surface heat treatments like induction hardening and in recent times electron beam and laser hardening are used to improve wear and fatigue resistance of ductile irons. However, the laser surface hardening has a lot of advantages over others such as low distortion due to high power density, flexibility, accuracy, lack of quenching medium and limited grain growth. In this work, laser surface hardening of Ferrito pearlitic ductile iron grade has been carried out. Hardening was performed with a 400W continuous wave fiber laser with the objective to investigate the effect of local tempering in continuous laser multi-pass laser surface hardening on hardness profile of the specimen.
2014-04-28
Technical Paper
2014-28-0016
Ashok KK, Bade Simhachalam, Dhanooj Balakrishnan, Krishna Srinivas
Abstract In this paper, the application of tube Extrusion for the development of stepped tubular components is discussed. Thickness increase with respect to cold reduction of diameter is predicted with reasonable accuracy. Thickness increase, length increase and strain hardening coefficient for a given cold reduction of diameter of tube are obtained using LS-DYNA Software. True stress-plastic strain curves from the tensile test are used in the forming simulation using LS-DYNA. A special purpose machine is developed for the production of steering shaft components. Considerable reduction in weight is achieved by using stepped tubular components.
2014-04-20
Technical Paper
2014-01-9098
Ala Qattawi, Mahmoud Abdelhamid, Ahmad Mayyas, Mohammed Omar
1 The manufacturing of Origami based sheet metal products is a promising technology, mostly in terms of reducing the tooling and process complexity. This procedure can also be called fold forming, as it depends on exclusively shaping the required geometry via sequence of bends. However, the design analysis and modeling of folded sheet metal products are not fully mature, especially in terms of determining the best approach for transferring the analysis from a three-dimensional (3D) to a two-dimensional (2D) context. This manuscript discusses the extension of the Origami technique to the fold forming of sheet metal products represented in modeling approach and design considerations for the topological variations, the geometrical validity, and the variance of stress-based performance. This paper also details the optimization metrics that were developed to reflect the design and manufacturing differences among the possible topological and geometrical options for a single part design. These metrics target five different optimization objectives: material utilization, cost, ease of manufacturability, ease of handling, and mechanical behavior estimation.
2014-04-01
Technical Paper
2014-01-0995
Akihiro Kose, Motohiko Koushima, Tomohiro Ukai, Yuki Kawashima, Kouji Zushi
Abstract With increased awareness of environmental issues and regulations, developments for recent automotive engines are progressing towards engines with low fuel consumption. Due to these changes, automotive engine bearings are increasingly used in harsher environments, with higher loading. These operating conditions require bearings with both conformability and fatigue resistance. From the above background, various aluminum alloy bearings have previously been developed, including materials with solid solution treatment to improve their properties, and alloys which can be used with or without an overlay [1, 2, 3]. These materials are known to have good conformability and fatigue resistance. However, while conventional Al-Sn-Si alloy bearings display excellent sliding properties, due to the unceasing trend for engine downsizing, more conformability is required. In this study, by optimizing dispersion of the soft tin phase in Al-Sn-Si alloys, a bearing material with equal fatigue resistance and further improved conformability was developed.
2014-04-01
Technical Paper
2014-01-0997
Norihiro Hamada, Kiyohiro Suzuki
Abstract ADC12 is one of the common aluminum alloys for automobiles because it has suitable for casting and machining. However, the corrosion resistance of ADC12 is insufficient in comparison with other aluminum alloys. The corrosion depends on chemical composition of aluminum and circumstance around aluminum. It was considered that a crevice such as a seal gap accelerates corrosion rate. Therefore, the corrosion at a sealing gap between ADC12 and rubber gasket was investigated. Salt water corrosion tests were carried out with an o-ring compressed between ADC12 plate and plastic plate. Corrosion depth and corrosion area at sealing surface were measured with a microscope. The corrosion depth at the sealing surface was deeper than that outside it. Since smooth surface of aluminum prevented the sealing surface from corrosion, it was considered that the narrow sealing gap enabled to decrease in the corrosion rate.
2014-04-01
Technical Paper
2014-01-0955
Toshiyuki Chitose, Shu Kamiya, Yasunori Kabeya, Toru Desaki
Abstract In recent years, engines equipped with idle reduction system for fuel saving have been increased in Europe and Japan. Because of the start-stop frequency increase, correspondingly crankshaft and engine bearing contacts also increase. The friction between shaft and bearing is significant to reduce fuel consumption, and besides it, engine bearing wear tends to increase. Therefore, lower friction with small wear engine bearings are expected. In this paper, new developed engine bearing with solid lubricant overlay and its frictional and wear properties are reported (1). As experimental result, a bearing with MoS2 solid lubricant contained polyamide-imide resin coated overlay proved 40% less coefficient of friction, 25% less starting torque and 65% less bearing wear against conventional aluminum alloy bimetal bearing without overlay under close to the start-stop lubrication conditions by testers. Also diesel engine bench test proved less FMEP.
2014-04-01
Technical Paper
2014-01-0880
Christian Scheiblegger, Nantu Roy, Orlando Silva Parez, Andrew Hillis, Peter Pfeffer, Jos Darling
Abstract Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation. To improve bushing modeling of cab/box mounts for heavy duty/light duty trucks, a practical approach to model non-linear bushing dynamic characteristics has been tested and validated against standard bushing models.
2014-04-01
Technical Paper
2014-01-0785
Laurence Claus, Stephan Weitzel
Abstract As automotive technology rapidly provides advances in lighter weight designs and materials, the technology to fasten and join them must keep pace. This paper will explore two uniquely different fastening technologies that are being used to address some of today's demanding application challenges in plastics and thin steel and aluminum sheet. These are two areas of application that have historically provided few good options for designers, especially as they attempt to push the envelope with progressive, light weight designs. The first technology is self- tapping screws for plastics that, although not new, are now evolving to enable smaller bosses and shorter thread engagements, and incorporate light weight design options. Although dependent on the demands of the application, these screws can be produced in both steel and, now, lighter weight materials such as aluminum and plastic. The paper will explore how these technologies can be employed by the designer to obtain desired weight reduction initiatives over more conventional threaded fasteners for fastening plastic.
Viewing 1 to 30 of 5052

Filter

Subtopics