Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5077
2015-04-14
Technical Paper
2015-01-1740
Kelsie S. Richmond, Stephen Henry, Russell Richmond, David Belton
Gasket materials are utilized for various different types of high temperature testing to prevent leaking at bolted joints. In particular, the automotive test services field uses flanged-gasket bolted exhaust joints to provide a convenient method for installation & removal of exhaust components like catalytic converters for aging, performance testing, etc. Recent improvements in the catalyst aging methods require flanged-gasket joints that can withstand exhaust temperatures as high as 1200°C. Gasket materials previously used in these applications like the graphite based gasket materials have exhibited physical breakdowns, severe leakage, and general thermal failures under these extreme temperatures. In order to prevent these leaks, metal-reinforced gasket materials in a number of configurations were introduced to these extreme temperature environments to evaluate their robustness to these temperatures.
2015-04-14
Technical Paper
2015-01-0867
Ashish Shah, Per Tunestal, Bengt Johansson
This article is related to application of pre-chamber ignition device in heavy duty natural gas engine which, as previously shown by the authors, is capable of extending lean limit of operation and hence achieve better operating efficiency and reduce emissions. The effect of pre-chamber volume and nozzle diameter has been studied while operating with fuel rich combustion in the pre-chamber. The two parameters varied are the ratio of pre-chamber volume to engine’s clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber which is capable of spark ignition, fuel injection and pressure measurement.
2015-04-14
Technical Paper
2015-01-1499
Tadatsugu Takada, Kazuki Tomioka
Honda developed the right and left independent toe-angle control system (first-generation P-AWS) in the Acura RLX in 2013 and announced it as the first in the world. As indicated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has realized an excellent balance between the fun of handling that is at the driver’s will (INOMAMA) and driving performance with a sense of stability. This first-generation P-AWS is designed to be optimal to the vehicle specifications (suspension axial force, steering gear ratio, etc.) of the Acura RLX. Honda is due to widely adapt P-AWS to other models from now on. Following this, we developed the next-generation P-AWS system (second-generation P-AWS) in order to reconcile system performance and low cost wherever possible, in order to be adaptable for all ACURA models.
2015-04-14
Technical Paper
2015-01-0686
Kenji Matsumoto, Hideharu Koga, Yuji Mihara
 When evaluating the wear properties of slide bearings for car engines, it is common to conduct long-term physical tests using a bearing tester for screening according to the revolution speed of the shaft, supply oil temperature and bearing pressure in the actual use of engines. The loading waveform applied depends on the capability of the tester that is loaded, and it is often difficult to apply a loading waveform equivalent to that of actual engines. To design an engine that is more compact or lighter, it is necessary to reduce the dimensions of slide bearings and the distance between bearings. This requires loading tests on a newly-designed engine by applying a loading waveform equivalent to that of actual engines to slide bearings and their vicinity before conducting a firing test. We conducted an engine firing test by attaching thin-film sensors to the slide bearing part of the engine and measured the actual load distribution.
2015-04-14
Technical Paper
2015-01-1371
Samuel T. Bartlett
With the many model variations produced on the same production line because of increasing power train options, fuel efficiency targets, performance and customer demands we saw limitations with our existing suspension mount equipment. Layout options were limited due to guided shifts and transfers. Large supporting frame work took up valuable floor space. Model wheelbase sizes and suspension pallets were limited to the model requirements of the original equipment. We needed an adaptable system to install the engine/front suspension assemblies and the rear suspension assemblies. We found a solution by utilizing the capabilities of 6-axis industrial robots to make the core components of the equipment simpler; many of the functions of a traditional machine can now be accomplished by the robot. We were able to vary install position to optimize handling characteristics and accommodate the model-to-model varieties on the same production line.
2015-04-14
Technical Paper
2015-01-1377
Hiroshi Yokoyama, Atsushi Otani, Naoyuki Shirota, Takao Umezawa
Windshield wipers and washers are essential for safety driving of motor vehicles and expected to steadily provide a good field of vision under various weather and environment conditions. However, there is a concern that washers are likely to be affected by several factors such as fast air flow at high speed driving and high washer fluid viscosity at low temperature, which may result in unsatisfactory distribution of washer fluid onto windshields. As another example, particularly-high cleaning performance is required while vehicles are running on a winter road with mud and salt. Conversely, if these concerns are resolved, washers can contribute more to vehicle safety. Thus, we have developed a washer nozzle with a self-oscillating flow passage focusing on distributing appropriate amount of washer fluid.
2015-04-14
Technical Paper
2015-01-1326
Guru Prasad Mani, Sundaravadivelu M, Kavin Raja
Generation of discretization with prescribed element sizes are adapted to the geometry. From Rules of thumb, for a complicated geometry it is important to select the reasonable element order, shapes and size for accurate results. In order to that, this paper describes the influence of elemental algorithm of the catalytic converter mounting brackets. Brackets are main source of mounting of various systems mainly intake and exhaust in the engine .In exhaust hot end system, bracket designs play a vital role because it has to withstand heavy structural vibrations without isolation combined with thermal loads. Bracket design and stiffness determines the whole Catalytic converter system's rigidity. So, here discretization of converter brackets by linear and parabolic elements is studied with different elements types and compared.
2015-04-14
Technical Paper
2015-01-0605
Guoyu Yang, Scott Kish
Abstract Heavy stamping parts of HSLA (high strength low alloy) steel are widely used in the automotive industry for design optimization. The material properties of the heavy stamping parts however, change during the stamping process, making simulation and analysis difficult. Traditional tensile tests, used to obtain the material properties, might not be applicable due to the size of specimens required. Without reliable material properties, it is very hard for FEA simulations to predict accurate results. A method for characterizing the material properties of a heavy stamped steel part was presented in this paper. Based on monotonic and fatigue test results, gathered in cooperation with The University of Toledo, we developed specific material models for strength and fatigue analysis. Instead of employing commercial fatigue analysis software, we can perform the fatigue life prediction by using traditional static analysis in ABAQUS with more accurate results.
2015-04-14
Technical Paper
2015-01-0918
Daniel Duke, Andrew Swantek, Alan Kastengren, Kamel Fezzaa, Christopher Powell
Cavitation plays an important role in fuel injection systems. It alters the nozzle’s internal flow structure and discharge coefficient, and also contributes to injector wear. Quantitatively measuring and mapping the cavitation vapor distribution in a fuel injector is difficult, as cavitation occurs on very short time and length scales. Optical measurements of transparent model nozzles can indicate the morphology of large-scale cavitation, but are generally limited by the substantial amount of scattering that occurs due to large changes in refractive index between vapor and liquid phases. These limitations can be overcome with x-ray diagnostics, as x-rays refract, scatter and absorb much more weakly. Here, we present an overview of some recent developments in quantitative x-ray diagnostics for cavitating flows. Measurements were conducted at the Advanced Photon Source at Argonne National Laboratory, using a submerged plastic test nozzle 500µm in diameter.
2015-04-14
Technical Paper
2015-01-0921
Raul Payri, Jaime Gimeno, Pedro Marti-Aldaravi, Marcos Carreres
Proper initial conditions are essential to successfully perform a simulation, specially for highly transient problems such Diesel spray injection. Until now, no much attention has been paid to the internal nozzle flow initialization because spray simulations are usually decoupled from the nozzle. However, new homogeneous models, such Eulerian Spray Atomization (ESA) model, allow simulating the internal nozzle flow and the spray seamlessly. Therefore, behavior of the spray for the first microseconds is highly influenced by the initial conditions inside the nozzle. Furthermore, last experiments confirm the presence of gas inside the nozzle between following injections. This work deals with the initilialization procedure in a way that mass flow rate, momentum flux and spray penetration curves are well predicted by the model.
2015-04-14
Technical Paper
2015-01-0948
Le (Emma) Zhao, Ahmed Abdul Moiz, Jeffrey Naber, Seong-Young Lee, Sam Barros, William Atkinson
Liquid spray breakup and atomization, two multi-phase phenomena, strongly affect the ignition and combustion processes. High-speed jet-to-jet impingement in water sprays could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O’Rourke collision models are implemented for the simulation.
2015-04-14
Technical Paper
2015-01-1303
Wenli LI, Xiao-hui SHI, Dong GUO, Peng YI
An approach using dynamic emulation of mechanical loads for testing and validation of the vehicles' Transmission will be presented in the paper. In order to reduce costs and shorten new vehicle development cycle time, vehicle simulation on the driveline test bench is an attractive alternative at the development phase to reduce the quantity of proto vehicles. This test method moves the test site from the road to the bench without the need for real chassis parts. Dynamic emulation of mechanical loads is a Hardware-in-the-loop (HIL) procedure, which can be used as a supplement of the conventional simulations in testing of the operation of algorithms without the need for the prototypes. The combustion engine is replaced by a electric drive dynamometer, which replicates the torque and speed signature of an actual engine, The road load sistance of the vehicle on a real test road is accurately simulated on Load dynamometer by corrected road load forces.
2015-04-14
Technical Paper
2015-01-0548
Andrew Halfpenny PhD, Robin Anderson PhD, Xiaobin Lin PhD
This paper reviews the topic of Thermo-mechanical Fatigue (TMF) as applied to hot automotive components such as cylinder heads, pistons, manifolds, turbo chargers and exhaust components. Component durability is severely affected by high temperatures. Basic material properties such as: UTS, yield strength and elastic moduli; reduce with rising temperature. Fatigue lives also reduce and other damaging effects such as Creep and Oxidation start to interact to further impact the performance. In this paper we divide hot automotive components into two groups and look at design methods applicable to both types, these are: 1. Components that see mechanical loads at high steady-state temperatures – so-called ‘iso-thermal’ fatigue and, 2.
2015-04-14
Technical Paper
2015-01-0529
Jody N. Hall, Jason Coryell, Bill Wendt, Donald Adamski
Several production parts have been randomly splitting from trimmed edges even at strains well below the forming limit and hole expansion capabilities of the material. These parts are all Dual Phase (DP) steel with one exception of a multiphase version of a DP980 grade. The fractures were not limited to a specific strength, supplier, or stamping plant. Each part was studied to determine the root cause of failure for each edge fracture and to document the solutions in appropriate standards and specifications. As typical for dual phase steel, the edge fractures involved a stretch condition. However, these fractures are unexpected at such low strains. This paper will review the importance of the trimmed edge condition that must be maintained to eliminate fractures at low strains. A comparison will be made between good and poor trim quality along with an updated specification for a good trimmed edge.
2015-04-14
Technical Paper
2015-01-0779
Gerald Gentz
Turbulent Jet Ignition (TJI) is a prechamber ignition enhancement method that allows for fast burning durations due to the distributed nature of ignition. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a TJI system in a Rapid Compression Machine. Three different single orifice TJI nozzles with orifice diameters of 1.5mm, 2mm, and 3mm were tested for the TJI pre-chamber over a range of air to fuel ratios. The performance of the TJI system based on nozzle orifice diameter was characterized by considering both the 0-10% and the 10-90% burn durations of the pressure rise due to combustion. It was found that the 1.5 mm orifice exhibited the shortest 0-10% burn duration, which corresponded to the fastest flame initiation. The orifice diameter did not significantly affect the 10-90% burn duration near stoichiometric air to fuel ratios.
2015-04-14
Technical Paper
2015-01-0547
Dengfeng Wang, Rongchao Jiang
Fatigue life prediction of vehicle components is one of the key requirements in design and development process of passenger cars. The fatigue strength of automotive components has been traditionally evaluated by conducting physical tests on actual road, which is time-consuming and need loads of resources. In an attempt to overcome these disadvantages, computer simulations are used to estimate vehicle durability. Therefore, the modal stress recovery method is presented in this paper to obtain the dynamic stress history to analyze fatigue failure of the front subframe of a passenger car. Firstly, an accurate finite element model of the subframe was created using MSC.Patran software, and verified by modal test of the subframe in a free-free configuration.
2015-04-14
Technical Paper
2015-01-1743
TANMAY SANTRA, Vikas Kumar Agarwal
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel gasket (MLS), strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, block, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
2015-04-14
Technical Paper
2015-01-0527
Pierre-Olivier Santacreu, Guillaume Badinier, Jean-Benoit Moreau, Jean-Marc herbelin
A new Ni-free martensitic stainless steel was developed for hot stamped automotive parts, especially in order to design lightweight chassis. After hot stamping simulation, the material exhibits 1.2 GPa ultimate tensile strength with 8% total elongation, in the as-quenched condition (without any tempering treatment). Moreover the material’s chemical composition was optimised to improve the ductility at low temperature and during high strain rate mechanical testing. As a result, no brittle fracture in impact testing at -40°C was observed, and a good behaviour in crash was recorded. To further assess the material’s performance, high cycle and low-cycle fatigue properties of the grade were characterized and the effects of machining and surface were studied. Results show that the fatigue limits at 2 million cycles for a stress ratio of -1 for rough bare surface and shot peened surface are quite high at 0.45 and 0.55 times the ultimate tensile strength (in the range of 540 MPa to 640 MPa).
2015-03-30
Technical Paper
2015-01-0126
Meng Choung Chiong, Srithar Rajoo, Alessandro romagnoli
This paper presents a concept for new piston expander utilizing nozzle as part of a secondary steam cycle to recover exhaust energy. A commercial 1D simulation tool, AVL BOOST, was used to model the system, and comparison study was carried out between the conventional and nozzle piston expanders. It was found the nozzle piston expander could increase output power from a minimum of 0.73kW up to a maximum of 4.75kW. The simulation study has shown that the concept of using nozzle to admit steam into the piston expander has potential to improve engine system level efficiency. This paper presents a concept for new piston expander utilizing nozzle as part of a secondary steam cycle to recover exhaust energy. A commercial 1D simulation tool, AVL BOOST, was used to model the system, and comparison study was carried out between the conventional and nozzle piston expanders. It was found the nozzle piston expander could increase output power from a minimum of 0.73kW up to a maximum of 4.75kW.
2015-01-14
Technical Paper
2015-26-0019
Werner Bick, Cagri Cevik, Christoph Steffens
Abstract In order to minimize the development and production costs in the automotive industry, despite steadily increasing variety of models and applications offered by the OEMs, the pressure on standardization of components and production processes is increasing continuously. As a direct consequence, modular engine families are already established with high degrees of common parts and kits as well as standardized interfaces for all vehicle platforms by most manufacturers these days. At the same time, the world adopted and announced massive legal demands concerning the reduction of CO2 emissions for the entire vehicle fleet. In addition to the optimization of the combustion process, the exhaust gas aftertreatment and thermal management, the use of improved and more resilient materials for higher reduction of mechanical friction leads to a significant amount of the realized lowering in fuel consumption respective CO2 emissions.
2015-01-14
Technical Paper
2015-26-0029
Suresh Kumar Kandreegula, Umashanker Gupta, Swapnil Vyas
Abstract Proper sealing of an engine is very important parameter in an engine design. Even small amount of gas leakage from the engine can affect the overall performance of the engine during operation. There are two important factors in enhancing the efficiency of the sealing of the gasket are right tightening torque of bolts & gasket design. In this study, both the distribution of the contact pressure on the gasket, and the stresses of the cylinder head at different loading conditions, such as cold assembly, hot assembly, cold start, and hot firing, is simulated by commercial tool, based on the finite element method (FEM). The results shows that the efficiency of the sealing of the cylinder head gasket depends on the tightening torque of the hold-down bolts, without taking into consideration any thermal load resulting from the temperature distribution in the cylinder head.
2015-01-14
Technical Paper
2015-26-0140
Milind Ambardekar, Adatiya Yogesh, Sudhakara Naidu
Abstract Production variations of a heavy duty truck for its vibrations were measured and then analyzed through an Ishikawa diagram. Noise and Control factors of the truck idle shake were indentified. The major cause was found to be piece to piece variations of its power-train (PT) rubber mounts. To overcome the same, a new nominal level of the mount stiffness was sought based on minimization of a cost function related to vibration transmissibility and fatigue damage of the mounts under dynamic loadings. Physical prototypes of such mounts were proved to minimize the variations of the driver's seat shake at idling among various trucks of the same design. These learning's are useful for design of various subsystems or components to refine the full vehicle-Noise Vibration Harshness (NVH) at the robust design level.
2015-01-14
Technical Paper
2015-26-0127
Gaurav Paliwal, Naveen Sukumar, Umashanker Gupta, Saurav Roy, Hemantkumar Rathi
Abstract The main emphasis for a commercial vehicle design which was focused on fuel-economy and durability does not fulfill the increasing customer expectations anymore. Commercial vehicle designers need to focus on other vehicle aspects such as steering, ride comfort, NVH, braking, ergonomics and aesthetics in order to provide car like perception to truck, bus drivers and passengers during long distance drives. Powertrain mounting system must perform many functions. First and foremost, the mounting system must maintain & control the overall motion of the powertrain, to restrict its envelope reasonably, thereby avoiding damage to any vehicle component from the potential impact. This requires the mount to be stiff. Second the mount must provide good vibration isolation to have a comfortable ride to the vehicle occupant. This requires the mount to be soft.
2015-01-14
Technical Paper
2015-26-0215
T Sukumar, Murugan Subramanian, Sathish Kumar Subramaniyan, Nandakumar Subramanian
Abstract Reliable sealing solutions are extremely important in commercial vehicle industry because sealing failures can cause vehicle breakdown, damage of equipment or even accident, incurring expenses that are substantially higher than the costs of just replacing the damaged seals. Consequently, new seal designs must be experimentally verified and validated before they can be implemented. In this study, Mooney - Rivlin hyper elastic material model is used to simulate the sealing behavior during dynamic conditions. The seal under study is a large diameter lip seal made of Neoprene® rubber (NBR) A finite element model to study the response of the seal under dynamic conditions was developed. The analysis took into account the mating parts dimensions and the lip seal parameters. Three designs were proposed and verified. The seal design is optimized using non-linear FEA and validated. Results include contact pressure, deflection and strain experienced by the seal during actuation.
2015-01-14
Technical Paper
2015-26-0154
Anand Ramalingam, Saravanakumar Thangamani
Abstract This paper discusses about the Flange design study carried out in Fuel Delivery Module (FDM) for meeting out contradictory requirements of robustness and crash worthiness. FDM is assembled in the fuel tank with flange covering the tank opening, and swirl pot assembly comprising fuel pump attached to flange through two steel struts. During crash, FDM undergoes sudden deceleration. Due to inertia, swirl pot assembly creates bending moment in the flange-strut interface. At such adverse condition, flange should not exhibit crack on the sealing side, as it might expose fuel in the fuel tank to the atmosphere. To ensure safety, flange-strut interface in the bottom side of flange is designed with higher stress concentration factor. So, the struts along with swirl pot assembly will break away from flange during crash without creating crack in the flange sealing faces.
2015-01-01
Journal Article
2014-01-9101
Susan Sawyer-Beaulieu, Edwin K.L. Tam
Abstract Life-cycle assessments (LCAs) conducted, to date, of the end-of-life phase of vehicles rely significantly on assumed values and extrapolations within models. The end phase of vehicles, however, has become all the more important as a consequence of increasing regulatory requirements on materials recovery, tightening disposal restrictions, and the rapid introduction of new materials and electronics, all potentially impacting a vehicle's efficacy for achieving greater levels of sustainability. This article presents and discusses selected research results of a comprehensive gate-to-gate life-cycle-inventory (LCI) of end-of-life vehicle (ELV) dismantling and shredding processes, constructed through a comprehensive and detailed case study, and argues that managing and implementing creative dismantling practices can improve significantly the recovery of both reusable and recyclable materials from end-of-life vehicles.
2014-11-11
Technical Paper
2014-32-0026
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Abstract Nowadays the challenge in design of auxiliary devices for automotive small engines is focused on packaging reduction and on the increase of the performance. These requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.A. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat-to-flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses.
2014-10-13
Technical Paper
2014-01-2721
Robert H. Barbour, Robert Quigley, Avtar Panesar
Abstract Diesel powered vehicles have grown in popularity over the last 15 years due to the introduction of advanced, high pressure, direct injection fuel systems that enable improved emissions, power and a more desirable driving experience. However, such vehicles only perform optimally when the fuel system is in a clean condition. When deposits form inside the injector nozzle holes, a measurable deterioration in power is observed. The CEC F-98-08 Peugeot DW10 engine test was introduced in 2008 in order to evaluate the nozzle fouling propensity of fuels and the beneficial effect of deposit control additives. Papers have been published demonstrating such effects, in particular the propensity of zinc and biodiesel contaminants to cause injector fouling and the performance of additives in both deposit control (keep clean) and removal (clean-up) modes.
2014-10-13
Technical Paper
2014-01-2700
Fredrik Königsson, Per Risberg, Hans-Erik Angstrom
Abstract Nozzle coking in diesel engines has received a lot of attention in recent years. High temperature in the nozzle tip is one of the key factors known to accelerate this process. In premixed CNG-diesel dual fuel, DDF, engines a large portion of the diesel fuel through the injector is removed compared to regular diesel operation. This can result in very high nozzle temperatures. Nozzle hole coking can therefore be expected to pose a significant challenge for DDF operation. In this paper an experimental study of nozzle coking has been performed on a DDF single cylinder engine. The objective was to investigate how the rate of injector nozzle hole coking during DDF operation compares to diesel operation. In addition to the nozzle tip temperature, the impact of other parameters on coking rate was also of interest.
2014-10-13
Technical Paper
2014-01-2743
Luca Marchitto, Simona Merola, Cinzia Tornatore, Gerardo Valentino
Abstract Alcohols are largely used in spark-ignition (SI) engines as alternative fuels to gasoline. Particularly, the use of butanol meets growing interest due to its properties that are similar to gasoline, if compared with other alcohols. This paper aims to make a comparative analysis on the atomization process of gasoline and n-butanol fuel injected by a multi-hole injector nozzle for spark ignition engines. Phase Doppler Anemometry technique was applied to investigate the behavior of a spray emerging from a six-hole nozzle for direct injection spark ignition engine applications. Commercial gasoline and pure n-butanol were investigated. The fuels were injected at two pressures: namely at 5 and 10 MPa, in a test vessel at quiescent air conditions, ambient temperature and backpressure. Droplets diameter and velocity were estimated along the axis and on the edge direction of a jet through Phase Doppler Anemometry in order to provide useful information on the atomization process.
Viewing 1 to 30 of 5077

Filter

Subtopics