Criteria

Text:
Display:

Results

Viewing 211 to 240 of 6706
2015-09-15
Journal Article
2015-01-2610
Patrick Land, Richard Crossley, David Branson, Svetan Ratchev
Abstract There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
2015-09-06
Technical Paper
2015-24-2467
Alessandro Ferrari, Federica Paolicelli
Abstract A challenging task that is required to modern injection systems is represented by the enhanced control of the injected quantities, especially when small injections are considered, such as, pilot and main shots in the context of multiple injections. The propagation of the pressure waves triggered by the nozzle opening and closure events through the high-pressure hydraulic circuit can influence and alter the performance of the injection apparatus. For this reason, an investigation of the injection system fluid dynamics in the frequency domain has been proposed. A complete lumped parameter model of the high-pressure hydraulic circuit has been applied to perform a modal analysis. The visualization of the main vibration modes of the apparatus allows a detailed and deep comprehension of the system dynamics. Furthermore, the possible resonances, which are induced by the action of the external forcing terms, have been identified.
2015-09-06
Technical Paper
2015-24-2470
Daniel Pearce, Yannis Hardalupas, A.M.K.P Taylor
The measurement of the rate of fuel injection using a constant volume, fluid filled chamber and measuring the pressure change as a function of time due to the injected fluid (the so called “Zeuch” method) is an industry standard due to its simple theoretical underpinnings. Such a measurement device is useful to determine key timing and quantity parameters for injection system improvements to meet the evolving requirements of emissions, power and economy. This study aims to further the understanding of the nature of cavitation which could occur in the near nozzle region under these specific conditions of liquid into liquid injection using high pressure diesel injectors for heavy duty engines. The motivation for this work is to better understand the temporal signature of the pressure signals that arise in a typical injection cycle.
2015-09-06
Journal Article
2015-24-2462
Fabio Auriemma, Heiki Tiikoja
The acoustic impedance exhibited by a new type of element for noise control, the Micro-Grooved Elements (MGEs), has been widely investigated in this paper. The MGEs are typically composed of two overlying layers presenting macroscopic slots and a number of micro-grooves on one of the contact surfaces. The micro-grooves result in micro-channels as the layers are assembled to form the element. Similarly to Micro-Perforated Elements (MPEs), the MGEs have been proved to provide effective dissipation of acoustic energy by the means of viscous losses taking place in the micro-channels. However, in contrast to the MPEs, the MGEs use the grooves, instead of the holes, in which the air is forced to pass through. It results in more cost effective elements, which have been found to represent an adequate alternative for fibrous materials, typically present in silencer units.
2015-09-06
Technical Paper
2015-24-2524
José Lujan, José V. Pastor, Héctor Climent, Manuel Rivas
Abstract On actual gasoline turbocharged engines it is common to use a compressor by-pass valve in order to solve the compressor surge problem when the throttle pedal position is released and closes rapidly. The paper deals with a methodology based on experiments to measure the discharge coefficient of an integrated compressor by-pass valve, to understand the possible difference between the steady flow test bench and turbocharger test bench discharge coefficient measurements. To determine if there is some compressor outlet flow field influence due to compressor blades rotation that could modify the discharge coefficient measurement, compared to the steady flow test bench measurements, a fully instrumented turbocharger was used to measure the difference between steady flow test bench and turbocharger test bench discharge coefficients results.
2015-09-06
Technical Paper
2015-24-2526
Borislav Klarin, Thomas Resch, Chiara Sessarego, Giorgio Spanu, Gianni Lamonaca
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
2015-09-06
Technical Paper
2015-24-2410
Stefania Falfari, Claudio Forte, Gian Bianchi, Giulio Cazzoli, Cristian Catellani, Lucio Postrioti, Fabrizio Ottobre
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
2015-09-06
Journal Article
2015-24-2472
Nikolaos Papadopoulos, Pavlos Aleiferis
The design of a Diesel injector is a key factor in achieving higher engine efficiency. The injector's fuel atomisation characteristics are also critical for minimising toxic emissions such as unburnt Hydrocarbons (HC). However, when developing injection systems, the small dimensions of the nozzle render optical experimental investigations very challenging under realistic engine conditions. Therefore, Computational Fluid Dynamics (CFD) can be used instead. For the present work, transient, Volume Of Fluid (VOF), multiphase simulations of the flow inside and immediately downstream of a real-size multi-hole nozzle were performed, during and after the injection event with a small air chamber coupled to the injector downstream of the nozzle exit. A Reynolds Averaged Navier-Stokes (RANS) approach was used to account for turbulence. Grid dependency studies were performed with 200k-1.5M cells.
2015-09-01
Technical Paper
2015-01-1838
Sumito Yokobe, Tetsuya Oda, Katsuyuki Ohsawa, Takahiro Sumi, Shuhei Sugata, Keiichiro Yabuta
The spray characteristics and inside flow of a marine diesel injector were investigated both experimentally and numerically. From the experiments, we observed that the penetration of the sprays in the early injection stage gradually increases. This phenomenon differs significantly from that of the small automobile diesel injector, in which penetration increases linearly with time. Using the momentum method to obtain injection rate measurements, we observed an injection rate spike at each injection event just after the injection began. The observed spray results show that the small portion of fuel remaining inside the nozzle from the previous injection event is ejected first, and then the main volume of fuel is ejected. Both fuels accumulate as spray droplets and gradually accelerate after the early injection stage. Numerical simulations of the injector's inside flow show that the fuel injection rate becomes saturated in needle lifts larger than 0.3 mm.
2015-09-01
Technical Paper
2015-01-1836
Naoto Horibe, Tatsuya Komizo, Yuji Mamizuka, Takashi Sumimoto, Hiroshi Kawanabe, Takuji Ishiyama
A series of experiments was conducted using a single-cylinder small-bore (85 mm) diesel engine to investigate the smoke-reduction effect of post injection by varying the number of injection nozzle orifices and the injection pressure. The experiments were performed under a constant injection quantity condition and under a fixed NOx emission condition. The results indicated that the smoke emission of six-hole, seven-hole, and eight-hole nozzles decreased for advanced post injection, except that the smoke emission of the 10-hole nozzle increased as the post injection was advanced from a moderately late timing around 17° ATDC. However, the smoke emission of the 10-hole nozzle with a higher injection pressure decreased for advanced post injection. These trends were explained considering the influence of the main-spray flames on post sprays based on CFD simulation results.
2015-09-01
Technical Paper
2015-01-1908
R. Inagaki, T. Yamazaki, T. Haibara, S. Mitani, Eriko Matsumura, Jiro Senda
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
2015-09-01
Technical Paper
2015-01-1920
Pengbo Dong, Takuya Inaba, Keiya Nishida, Youichi Ogata, Daisuke Shimo, Makoto Namba
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
2015-09-01
Technical Paper
2015-01-2035
Mathieu Picard, Tian Tian, Takayuki Nishino
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
2015-09-01
Technical Paper
2015-01-1834
Andrew. B Swantek, Daniel J. Duke, Christopher F. Powell, Alan L. Kastengren
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
2015-09-01
Technical Paper
2015-01-1903
A.J. Butcher, P.G. Aleiferis, David Richardson
This paper addresses the need for fundamental understanding of the mechanisms of fuel spray formation and mixture preparation in direct injection spark ignition (DISI) engines. Fuel injection systems for DISI engines undergo rapid developments in their design and performance, therefore, their spray breakup mechanisms in the physical conditions encountered in DISI engines over a range of operating conditions and injection strategies require continuous attention. In this context, there are sparse data in the literature on spray formation differences between conventionally drilled injectors by spark erosion and latest Laser-drilled injector nozzles. A comparison was first carried out between the holes of spark-eroded and Laser-drilled injectors of same nominal type by analysing their in-nozzle geometry and surface roughness under an electron microscope.
2015-09-01
Technical Paper
2015-01-1950
Run Chen, Ryoma Okazumi, Keiya Nishida, Yoichi Ogata
Different ethanol-gasoline blended fuels, namely the E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle in a condition simulating the near top dead center (TDC). Two typical injection pressures of 10 and 20MPa were adopted to clarify the spray and flame behaviors. The correlation of the upstream unburned fuel and the flame propagation was analyzed by the high-speed imaging of shadowgraph. Moreover, the effects of ignition timing and location on the flame propagation were discussed based on the imaging of OH* chemiluminescence.
2015-09-01
Technical Paper
2015-01-1796
Andrew Ickes, Reed Hanson, Thomas Wallner
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
2015-09-01
Technical Paper
2015-01-1794
Yan Zhang, Macklini DallaNora, Hua Zhao
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. In order to take advantage of the inherent ability to retain a large and varied amount of residual at part-load condition and its potential to achieve extreme engine downsizing of a poppet valve engine running in the 2-stroke cycle, a single cylinder 4-valves camless direct injection gasoline engine has been developed and employed to investigate the CAI combustion process in the 2-stroke cycle mode. The CAI combustion is initiated by trapped residual gases from the adjustable scavenging process enabled by the variable intake and exhaust valve timings. In addition, the boosted intake air is used to provide the in-cylinder air/fuel mixture for maximum combustion efficiency.
2015-09-01
Technical Paper
2015-01-1818
Kangwoo Seo, Hua Zhao
In order to investigate feasibility of DME (Di-methyl ether) assisted gasoline CAI (controlled-auto ignition) combustion, direct DME injection is employed to act as the ignition source to trigger the auto-ignition combustion of premixed gasoline/air mixture with high temperature exhaust gas. Intake re-breathing valve strategy is adopted to obtain internal exhaust recirculation (EGR) that regulates heat release rate and ignitability of the premixed gasoline and air mixture. The effects of intake re-breathing valve timing and 2nd DME injection timing of different split injection ratios were investigated and discussed in terms of combustion characteristics, emission and efficiencies. The analyses showed that re-breathing intake valve timing had a large effect on the operation range of CAI combustion due to EGR and intake temperature variation.
2015-09-01
Technical Paper
2015-01-1860
Xianyin Leng, Zhixia He, Yu Jin, Wenjun Zhong, Wuqiang Long
The intersecting hole nozzle, in which each orifice is formed by the converging of two or more child-holes, was proposed for the purpose of enhancing the internal turbulence in diesel nozzle, so as to promote the fuel atomization. In this paper, the internal flow characteristics of a cylindrical hole nozzle and two intersecting hole nozzles are studied by CFD simulation. The results show that, compared with conventional cylindrical hole nozzle, the internal flow of intersecting hole nozzles is characterized with slower rate of pressure decrease in the hole, none or very little cavitation, as well as about 20% to 30% higher discharge coefficients, especially under conditions of high injection pressure. Additionally, the setting of the blind hole as a disturbing domain in the intersecting hole nozzle results in more perturbation for internal flow, which will be beneficial for fuel atomization.
2015-09-01
Technical Paper
2015-01-1943
Yuichiro Miura, Shinya Sasaki, Tsuyoshi Kashio, Ayumi Takahashi
Investigation of both intake valve deposit (IVD) formation tendency and the effect of surrounding conditions (e.g. atmospheric temperature) on IVD formation was conducted using poly aromatics-rich gasoline in a port fuel injected (PFI) engine. The IVD mostly consisted of carbonaceous deposit and this was shown to be derived from the heavier poly aromatic fuel molecules and engine oil. Analysis also indicated that some metals in the deposit structure came from additives of lubricating oil and the wear and/or corrosion within the engine. In this engine test, there was a significant effect of room temperature where higher room temperatures correlated with higher levels of IVDs. These results illustrate the importance of the surrounding condition in order to understand the IVD issues, higher IVDs weights will result under hotter driving (e.g. in summer) condition.
2015-09-01
Technical Paper
2015-01-1987
Lei Shi, Hualei Li, Huiyan Zhang, Xiaojian Mao, Kangyao Deng, Bo Liu, Lin Hua
The concept of regulated two-stage turbocharging system is proposed to provide high boost pressure level over a wide range of engine speed by regulating the energy distribution of two turbochargers. However, the control strategy of turbine bypass valve becomes more complicated due to the frequently changing working of vehicle diesel engines. In this paper, a two-stage turbocharging system was matched for D6114 diesel engine to improve the low-speed torque. The effect of valve opening on the steady-state and transient performance was analyzed, and two different regulating laws were determined according to the different optimum aims. Then the transient response characteristics of two different regulating laws were studied and optimized at three speeds with the transient loading test. For steady-state performance, the output power and fuel efficiency were increased with the matched turbocharging system.
2015-09-01
Technical Paper
2015-01-1945
Alessandro Montanaro, Luigi Allocca
During an injection process, a fluid undergoes a sudden pressure drop across the nozzle. If the pressure downstream the injector is below the saturation value of the fluid, superheated conditions are reached and thermodynamic instabilities realized. In internal combustion engines, flashing conditions greatly influence atomization and vaporization processes of a fuel as well as the mixture formation and combustion. This paper reports imaging behavior of a fuel under both flash boiling and non-flash boiling conditions. A GDI injector, eight-hole, 15.0 cc/s @ 10 MPa static flow, injected a single-component fluid (iso-octane), generating the spray. Experiments were carried out in an optically-accessible constant-volume quiescent vessel by Mie-scattering technique. A C-Mos high-speed camera was used to acquire cycle-resolved images of the spray evolving in the chamber filled with N2 which pressure ranged between 0.05 and 0.3 MPa.
2015-09-01
Technical Paper
2015-01-2038
Yuichiro Kajiki, Hiroki Takata, Katsuhiro Ashihara, Akihiro Honda, Kazunari Takenaka, Hirofumi Michioka
Engine friction reduction is an effective means to improve fuel consumption. Fluid friction reduction of main bearing is examined for engine friction reduction in cold condition. As one of the examinations, it was focused on low temperature of lubricating oil in the early stage during engine cold start. In hydrodynamic lubrication, the oil film temperature is maintained by balance between heat generation and heat transfer. The heat generation is generated by shear of lubricating oil. The factors of the heat transfer, the following elements are considered as follows, A) The heat transfer to a crank shaft, B) The heat transfer to a bearing, C) The heat transfer by convection. If the heat generation is constant, oil film temperature is increased by reduction of heat transfer. It is considered that the reduction of oil leakage and reduction of the heat transfer by convection is equivalent.
2015-09-01
Journal Article
2015-01-1837
Takayuki Fuyuto, Yoshiaki Hattori, Hayato Yamashita, Makoto Mashida
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
2015-09-01
Journal Article
2015-01-1850
Michele Battistoni, Claudio Poggiani, Sibendu Som
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
2015-09-01
Technical Paper
2015-01-1906
Po-Wen Tu, Hongming Xu, Dhananjay Kumar Srivastava, Karl Dean, Daliang Jing, Li Cao, Adam Weall, Jens Krueger Venus
The large eddy simulation (LES) with Volume of Fluid (VOF) interface tracking method in Ansys-FLUENT has been used to study the effects of nozzle hole geometrical parameters on gasoline direct injection (GDI) fuel injectors, namely the effect of inner hole length/diameter (L/D) ratio and counter-bore diameters on near field spray characteristics. Using iso-octane as a model fuel at the fuel injection pressure of 200 bar, the results showed that the L/D ratio variation of the inner hole has a more significant influence on the spray characteristics than the counter-bore diameter variation. Reducing the L/D ratio effectively increases the mass flow rate, velocity, spray angle and reduces the droplet size and breakup length. The increased spray angle results in wall impingements inside the counter-bore cavity, particularly for L/D=1 which can potentially lead to increased deposit accumulation inside fuel injectors.
2015-06-15
Technical Paper
2015-01-2368
Babitha Kalla, Sanjeevgouda Patil, Mansinh Kumbhar
Abstract Idle NVH (Noise Vibration Harshness) is one of the major quality parameters that customer looks into while buying the vehicle. Idle shake is undesirable vibrations generated from Engine while it is in idling condition. These low frequency vibrations affects both driver and passenger comfort. Vibrations are perceived by customer through the interfaces such as the seats, floor, and steering wheel. The frequencies of vibration felt by customer ranges between 10-30 Hz and varies based on engine configurations. There are two factors that are critical to the vehicle idle NVH quality, 1. Engine excitation force and 2. Vehicle sensitivity to excitation forces (Transfer function). Even though the engine excitation forces are governed by cylinder combustion process inside the cylinder and engine mass, it is also largely affected by how well the engine and transmission are supported on vehicle through isolators.
2015-06-15
Technical Paper
2015-01-2190
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Abstract Mount development and optimization plays an important role in the NVH refinement of vehicle as they significantly influence overall driving experience. Dynamic stiffness is a key parameter that directly affects the mount performance. Conventional dynamic stiffness evaluation techniques are cumbersome and time consuming. The dynamic stiffness of mount depends on the magnitude of load, frequency of application and the working displacement. The above parameters would be far different in the test conditions under which the mounts are normally tested when compared to operating conditions. Hence there is need to find the dynamic stiffness of mounts in actual vehicle operating conditions. In this paper, the dynamic stiffness of elastomeric mounts is estimated by using a modified matrix inversion technique popularly termed as operational path analysis with exogenous inputs (OPAX).
2015-06-15
Technical Paper
2015-01-2212
A. Elsawaf, H. Metered, T. Vampola, Z. Sika
Abstract Active vibration control is the most effective method used for suppressing vibrations from external sources. This paper presents the particle swarm optimization (PSO) algorithm to search about the optimum feedback controller gains for the active mount suspension, for the first time, to reduce the vibrations level of a structural system. It consists of vibrating mass and flexible beam subjected to an external disturbance. A mathematical model and the equations of motion of the structure system with an active mount suspension are simulated using Matlab/Simulink software. The active controller was designed to control the first three modes of the structure. The proposed PSO algorithm aims to minimize the acceleration of the suspended mass as the objective function with constraint of the actuator force. Vibrations level is examined theoretically in order to assess the effectiveness of the proposed controller.
Viewing 211 to 240 of 6706

Filter

Subtopics