Criteria

Text:
Display:

Results

Viewing 121 to 150 of 6739
2016-09-27
Technical Paper
2016-01-2083
Steven P. Smith
Abstract This paper traces the development of a temporary blind fastener in the aircraft industry. These are used with automated drilling machines as part of an integrated assembly process where one-way assembly is inappropriate. Traditional blind temporary fasteners have a high protrusion (stand-off) on the side they are installed from, effectively preventing automated drilling. No suitable fastener was available on the market and existing suppliers were uninterested in development at the time. A set of requirements were created out of the need to improve efficiency of A380 wing assembly. However focus changed as the A350XWB programme demanded such a fastener. Testing, development and Stress approval are described leading to full deployment. Finally the paper looks at the additional factors which are required to successfully introduce a new standard of temporary fastening process.
2016-09-27
Technical Paper
2016-01-2084
Curtis Hayes
Abstract Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft.
2016-09-27
Journal Article
2016-01-2080
Carter L. Boad, Kevin Brandenstein
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
2016-09-27
Technical Paper
2016-01-2079
Alexander Janssen, Thorsten Dillhoefer
The industry wide requirement of new highly flexible automated fastening systems in aircraft production has created the need for developing new fastening systems. This paper will focus on the development of the Frame Riveting Assembly Cell (FRAC) by BROETJE-Automation to meet this need. The new FRAC machine configuration is built for automated drilling and fastening of different aircraft type parts. It is highly flexible with a high speed positioning system mounted multifunction end effector. System travel is limited only by installed track length. The FRAC integrates well with conventional and reconfigurable automated fastening work holding tools.
2016-09-27
Journal Article
2016-01-8100
Jordan Kelleher, Nikhil Ajotikar
Abstract Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2016-09-20
Technical Paper
2016-01-1996
David R. Markham, J. Michael Cutbirth
Abstract Modern military electronics systems are generating increasingly higher heat loads, necessitating larger capacity thermal management systems (TMSs). These high-capacity TMSs must meet the strict size and weight requirements of these advancing platforms. Commercially available compressor technology can generate sufficient cooling for these systems; however, they are too heavy and expansive. Mainstream Engineering Corporation has developed a compact, lightweight, high-speed screw compressor that can provide a large cooling capacity with a small package envelope. The compressor housing material is light-weight with a low coefficient of thermal expansion (CTE), allowing a wide operating temperature range. The compressor, with a nominal cooling capacity from 20 kW to 60 kW, was tested over a range of saturated suction conditions, pressure ratios, rotational speeds, and oil lubrication conditions.
2016-09-18
Journal Article
2016-01-1958
Seungpyo Lee, Nahyon Lee, Jongkeun Lim, Jungyang Park
Abstract Through transmitting power and carrying vehicle weight, automotive wheel bearings play an important role. Counterbalancing the bearing responsibilities, they also are designed to last the life of a vehicle without servicing. When mounted to the vehicle steering knuckle by bolts, distortion occurs to the outer ring. Performance is affected when distortion takes place at the seal mounting location and raceways. Finite element analysis using commercial software was performed to analyze the outer ring distortion. Elasto-plastic and contact analyses were carried out to compute the clamping behavior of the outer ring, bolts and the knuckle under various conditions. To verify the reliability of this study, the distortion of the outer ring was measured. The experimental results proved to be comparative with the analysis results.
2016-09-18
Technical Paper
2016-01-1957
Seonho Lee, Heejae Kang, Ohchul Kwon, Chirl Soo Shin
Abstract A trend in automotive parts development is the pursuit of long life, high quality and reliability. The increase in service life of automotive wheel bearings, by improving the rolling contact fatigue (RCF) life of bearing steels, was investigated. Conventional studies of bearing steels and heat treatments have dealt with quenching and tempering (Q/T) in 52100 steel. This study is a new trial to increase the strength of bearing steels by special austempering in phases after general Q/T heat treatments.
2016-09-18
Journal Article
2016-01-1956
Robert G. Sutherlin, Douglas Reed
Abstract For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
2016-09-18
Journal Article
2016-01-1959
Laura Sguotti, Davide Olivieri, Domenico Bosco
Abstract Bearing friction is a direct contribution to vehicle CO2 emissions. The friction is defined as the total resistance to rotation, resulting from the combination of rolling and sliding friction in the contact areas. First, friction reduction was approached from a theoretical standpoint by employing modeling and simulation techniques. Improvements identified in simulation were then used to: create a new set of design rules for the internal geometry of the bearing, introduce a new grease, develop new seals, also with the integration of labyrinth functions and an optimization of the preload range variation. In order to provide a reliable confirmation of the expected achievements, a new friction measurement methodology was also introduced.
2016-09-18
Technical Paper
2016-01-1960
Yukihisa Takayama
Recently, vehicle production volumes have been increasing, particularly in newly developing countries that often lack adequate infrastructure. These regions utilize many unimproved roads and frequently experience heavy rainfall, requiring robust product features. In contrast, developed countries, with well-maintained infrastructure, have emphasized protection of the environment, requiring automobile manufacturers to target reductions in carbon dioxide emissions. Hub unit bearings, which enable smooth wheel rotation, are mounted at the wheel center. The hub bearing is a critical part which supports the automotive body and requires high reliability. To make environmental progress, hub unit bearings have increasing requirements for low friction. NSK has developed effective grease technologies to meet the diverse requirements of hub unit bearings, such as high reliability and low friction under severe environmental conditions.
2016-06-15
Technical Paper
2016-01-1818
Raimo Kabral, Lin Du, Mats Abom, Magnus Knutsson
Abstract The concept of IC engine downsizing is a well-adapted industry standard, enabling better fuel conversion efficiency and the reduction of tailpipe emissions. This is achieved by utilizing different type of superchargers. As a consequence, the additional charger noise emission, at the IC engine inlet, can become a problem. In order to address such problem, the authors of this work have recently proposed a novel dissipative silencer for effective and robust noise control of the compressor. Essentially, it realizes an optimal flow channel impedance, referred to as the Cremer impedance. This is achieved by means of a straight flow channel with a locally reacting wall consisting of air cavities covered by an acoustic resistance, e.g., a micro-perforated panel (MPP). In this paper, an improved optimization method of this silencer is presented. The classical Cremer impedance model is modified to account for mean flow dependence of the optimal wave number.
2016-06-15
Technical Paper
2016-01-1763
Thierry Bourdon, Rodrigue Bouete
Abstract Either from a legislative point of view or because of OEM demands, the automotive industry is increasingly facing of reducing vibration & noise in the vehicle. More particularly on the engine area, the development of Gasoline and Diesel fuel components based on high pressure pumps, rails, any pipes and injectors are more and more subject of a particular NVH (Noise Vibration and Harshness) attention. The use of modern digital techniques such as 3D FEM vibroacoustic, leads to use virtual prototyping as complementary to traditional real hardware prototypes development. Among interest, number of iterative loops to reach a best design brings an important value to new product development with an optimized cost. Basically the core part of virtual prototyping is about a 3D FEM model definition for each component.
2016-06-15
Technical Paper
2016-01-1856
Hannes Allmaier, Günter Offner
Abstract Elastohydrodynamic (EHD)-simulation is a widely applied simulation technique that is used in a very diverse field of applications ranging from the study of vibroacoustics to the calculation of friction power losses in lubricated contacts. In particular, but not limited to, the automotive industry, technical advances and new requirements put current EHD simulation methodology under test. Ongoing trends like downsizing, downspeeding, start-stop and the continuing demand for increasing fuel efficiency impose new demands and challenges also on the simulation methodology. Increasing computational capabilities enable new simulation opportunities on the other hand. In the following, an overview is given on the current state of the art and today’s challenges for the elastohydrodynamic simulation of journal bearings and their wide range of applications from highly loaded main bearings supporting the crank shaft in the ICE to high speed turbocharger bearings.
2016-04-05
Technical Paper
2016-01-0554
José Galindo, Andrés Tiseira, Roberto Navarro, Daniel Tarí, Hadi Tartoussi, Stéphane Guilain
Abstract 0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
2016-04-05
Journal Article
2016-01-1597
Christopher Collin, Steffen Mack, Thomas Indinger, Joerg Mueller
Abstract The open jet wind tunnel is a widespread test section configuration for developing full scale passenger cars in the automotive industry. However, using a realizable nozzle cross section for cost effective aerodynamic development is always connected to the presence of wind tunnel effects. Wind tunnel wall interferences which are not present under open road conditions, can affect the measurement of aerodynamic forces. Thus, wind tunnel corrections may be required. This work contains the results of a CFD (Computational Fluid Dynamics) approach using unsteady Delayed Detached Eddy Simulations (DDES) to evaluate wind tunnel interferences for open jet test sections. The Full Scale DrivAer reference geometry of the Technical University of Munich (TUM) using different rear end shapes has been selected for these investigations.
2016-04-05
Journal Article
2016-01-1560
Bo Lin, Chinedum E. Okwudire
Abstract Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
2016-04-05
Technical Paper
2016-01-0093
Haizhen Liu, Rui He, Jian Wu, Wenlong Sun, Bing Zhu
Abstract With the development of modern vehicle chassis control systems, such as Anti-Lock Brake System (ABS), Acceleration Slip Regulation (ASR), Electronic Stability Control (ESC), and Regenerative Braking System (RBS) for EVs, etc., there comes a new requirement for the vehicle brake system that is the precise control of the wheel brake pressure. The Electro-Hydraulic Brake system (EHB), which owns an ability to adjust four wheels’ brake pressure independently, can be a good match with these systems. However, the traditional control logic of EHB is based on the PWM (Pulse-Width Modulation), which has a low control accuracy of linear electromagnetic valves. Therefore, this paper presents a research of the linear electro-magnetic valve characteristic analysis, and proposes a precise pressure control algorithm of the EHB system with a feed forward and a PID control of linear electro-magnetic valves.
2016-04-05
Journal Article
2016-01-0092
Stijn Kerst, Barys Shyrokau, Edward Holweg
Abstract Active vehicle safety and driving assistance systems can be made more efficient, more robust and less complex if wheel load information would be available. Although this information could be determined via numerous different methods, due to various reasons, no commercially feasible approach has yet been introduced. In this paper the approach of bearing load estimation is topic of interest. Using the bearing for load measurement has considerable advantages making it commercially attractive as: i) it can be performed on a non-rotating part, ii) all wheel loads can be measured and iii) usually the bearing serves the entire lifetime of the vehicle. This paper proposes a novel approach for the determination of wheel loading. This new approach, based on the strain variance on the surface of the bearing outer ring, is tested on a dedicated bearing test setup.
2016-04-05
Technical Paper
2016-01-0107
Sjon Moore
Abstract Traditional methods of costing wire harnesses focus primarily on the material and labor costs for manufacturing the final product. Rarely are costs related to variation-based complexity considered and when they are they tend to be simple approximations at best. In reality, the additional costs of excessive variation resulting in large part counts (unique harness level part numbers) can have a significant impact on the final cost incurred by an organization, and is often difficult to account for making it impossible for an organization to optimize their design, and everything that goes into making and delivering a finished product. It's important that these costs first be understood and modeled, and second that the designs be optimized based on this model. This paper will discuss these complexity based costs, including common sources, how they can be modeled, and methods for optimizing designs to account for these costs.
2016-04-05
Journal Article
2016-01-0281
Alaa El-Sharkawy, Dipan Arora, Abd El-Rahman Hekal, Amr Sami, Muhannad Hendy
Abstract In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
2016-04-05
Journal Article
2016-01-0243
Jingwei Zhu, Stefan Elbel
Abstract Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents a new two-phase nozzle restrictiveness control mechanism which is possibly applicable to two-phase ejectors used in vapor compression cycles.
2016-04-05
Technical Paper
2016-01-0247
Jiu Xu, Predrag Hrnjak
Abstract Automotive air conditioning compressor produces an annular-mist flow consisting of gas-phase refrigerant flow with oil film and oil droplets. This paper reports a method to calculate the oil retention and oil circulation ratio based on oil film thickness, wave speed, oil droplet size, oil droplet speed, and mass flow rate. Oil flow parameters are measured by high-speed camera capture and video processing in a non-invasive way. The estimated oil retention and oil circulation ratio results are compared quantitatively with the measurements from system experiments under different compressor outlet gas superficial velocity. The agreement between video result and sampling measurement shows that this method can be applied in other annular-mist flow analysis. It is also shown that most of the oil exists in film from the mass point of view while oil droplets contributes more to the oil mass flow rate because they travel in a much higher speed.
2016-04-05
Journal Article
2016-01-0776
Mateos Kassa, Carrie Hall, Andrew Ickes, Thomas Wallner
Abstract Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
2016-04-05
Technical Paper
2016-01-1022
Ahsanul Karim, Anthony Morelli, Keith Miazgowicz, Brian Lizotte, Robert Wade
The use of Swirl-Vanes or Inlet Guide Vanes (IGV) in gas engines is well-known and has demonstrated their ability to improve compressor surge margin at low flow rates. But, the use of swirl-vanes is not too common in large diesel engine turbo-chargers where compressor housing inlet has some form of Casing-Treatment (CT). Recently, Ford engineers tested swirl-vanes in a diesel engine turbocharger where the compressor inlet had a ported shroud casing-treatment and the experimental data showed no improvement in surge margin. Computational Fluid Dynamics (CFD) analyses were performed to investigate reasons why the surge margin did not improve after introducing swirl-vanes at the compressor inlet. The CFD results showed strong interactions between swirling flow at the compressor inlet and flow stream coming out of the compressor inlet casing-treatment.
2016-04-05
Technical Paper
2016-01-1014.01
Shyam K. Menon, Himakar Ganti, Chris Hagen
SAE International has been requested by the author to retract the above referenced paper. The retracted paper has been withdrawn and will no longer be available online or in print.
2016-04-05
Journal Article
2016-01-1013
Matthieu Duchemin, Vincent Collee
Abstract MCE-5 DEVELOPMENT has been developing its variable compression ratio engine (VCRi) for over a decade aiming at reducing fuel consumption and pollutant emissions. In order to transmit power from the piston (combustion) to the crankshaft, the MCE-5 VCRi technology is based on three innovative components: a gear wheel and two racks. This gear mechanism ensures a very low friction compared to other continuous VCR solutions based on bearings. However, this transmission is used in nonstandard conditions: the direction of rotation is reversed repeatedly, and the parts are submitted to high and rapidly varying loads. To avoid interferences and alteration caused by high contact pressure at high load, and ensure a regular transmission at low load, the profile of the teeth is carefully considered. A crowning shape is placed on the teeth in the direction of the gear axis, and a correction is applied to the tooth active profiles in the area of tooth roots and tooth tips.
2016-04-05
Technical Paper
2016-01-0517
Kentaro Kimura, Ryoji Habuchi, Tetsuya Kono, Tadashi Mori, Kaname Arimizu
Abstract To reduce cabin noise and vehicle weight (for lower fuel consumption), a lightweight soundproofing cover was developed as a countermeasure to sources of noise, using the Biot theory (vibration propagation theory in poroelastic materials). This report also presents the results of its application to a metal belt-type continuously variable transmission (CVT) used in Toyota Motor Corporation’s 2.0L vehicles.
2016-04-05
Journal Article
2016-01-0485
Jiaqi Li, Jimin Ni, Qiwei Wang
Abstract Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Viewing 121 to 150 of 6739

Filter

Subtopics