Criteria

Text:
Display:

Results

Viewing 121 to 150 of 6706
2016-04-05
Technical Paper
2016-01-1387
Subash Sudalaimuthu, Barry (Baizhong) Lin, Mohamed Sithik, Rajeev Sakunthala Rajendran
Abstract The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
2016-04-05
Technical Paper
2016-01-1348
Kenichi Higuchi, Fumihiko Toyoda, Hirohito Terashima, Shinji Ikeda, Eitaku Nobuyama
Abstract 1 There are two design challenges of the flow path switching valve in a three-stage variable discharge oil pump. The first is to obtain the required discharge pressure characteristics and the other is to prevent hydraulic vibration. Therefore, we established technologies to determine the shape of the valve and the valve housing that resolve these two challenges. The technology to obtain the required discharge pressure characteristics solves equations that are statically true, such as the equations for the equilibrium of forces and hydraulic orifice. The hydraulic vibration control technology derives a differential equation that takes transient behavior, including oil elasticity and inertia, into account first. Then, the derived equations are converted to a transfer function that indicates the valve behavior according to the input of oil pressure changes. And then the stability criterion is applied to judge whether hydraulic vibration occurs or not.
2016-04-05
Technical Paper
2016-01-1356
Can Li, Yadong Deng, Yuhua Xin
Abstract As a key component of airstream system equipped in the road sweeper, the structure of the suction nozzle determines its internal flow field distribution, which affects the dust-sucking efficiency to a great degree. This research is aiming to determine a better suction nozzle structure. Starting with an analysis of the one used in a certain type of road sweeper, the initial model of the suction nozzle is established, and the internal flow field is simulated with typical computational fluid dynamics (CFD) software named FLUENT. Based on the simulation results, the dust-sucking capability of the initial structure is evaluated from the aspects of pressure and velocity distribution. Furthermore, in order to explore the influence of different structural parameters on the flow field distribution within the suction nozzle, models with different cavity heights and shoulder angles are established, and Univariate Method is utilized to analyze the contrast models.
2016-04-05
Technical Paper
2016-01-0837
Per A. Risberg, Sara Alfredsson
Abstract A problem for the diesel engine that remains since its invention is injection nozzle hole fouling. More advanced injection systems and more complex fuels, now also including bio-components, have made the problem more intricate. Zinc and biodiesel have often been accused of being a big part of the problem, but is this really the case? In this study, nozzle fouling experiments were performed on a single cylinder engine. The experiments were divided in three parts, the first part studied the influence of zinc neodecanoate concentration on nozzle hole fouling, the second part studied the effect of neodecanoates of zinc, sodium, calcium, copper, and iron on fuel flow loss and in the last part it was examined how RME concentration in zinc neodecanoate contaminated petroleum diesel affected nozzle hole fouling propensity. After completed experiments, the nozzles were cut open and the deposits were analyzed in SEM and with EDX.
2016-04-05
Technical Paper
2016-01-0839
Wenbin Yu, Wenming Yang, Balaji Mohan, Kunlin Tay, Feiyang Zhao, Yunpeng Zhang, Siawkiang Chou, Markus Kraft, Malcolm Andrew Alexander, Alfred Yong, Kwokhow Lou
Abstract In this study, the internal nozzle flow and macroscopic spray characteristics of a kind of wide distillation fuel (WDF) - kerosene were investigated both with numerical and experimental approaches. Simulation results indicate that compared with diesel fuel, kerosene cavitates more due to higher turbulent kinetic energy as a result of lower viscosity. The results from experiment indicate that under lower charge density, the spray penetration for kerosene is obviously shorter than that for diesel, especially for the lower injection pressure. This is because lower fuel viscosity results in a reduction in the size of the spray droplets, leading to lower momentum. However the spray angle of kerosene is larger compared with diesel due to stronger turbulence in the nozzle flow caused by increased cavitation for kerosene, which also accords well with the simulation results.
2016-04-05
Technical Paper
2016-01-0860
Fredrik R. Westlye, Michele Battistoni, Scott A. Skeen, Julien Manin, Lyle M. Pickett, Anders Ivarsson
Abstract This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
2016-04-05
Technical Paper
2016-01-0863
Alessandro Montanaro, Luigi Allocca, Maurizio Lazzaro, Giovanni Meccariello
Abstract In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
2016-04-05
Technical Paper
2016-01-0873
Saeed Jahangirian, Aleksandra Egelja, Huiying Li
Abstract Demands for higher power engines have led to higher pressures in fuel injectors. Internal nozzle flow plays a critical role in the near nozzle flow and subsequent spray pattern. The internal flow becomes more difficult to model when the injector pressure and internal shape make it more prone to cavitation. Two Bosch injectors, proposed for experimental and computational studies under the Engine Combustion Network (namely “Spray C” and “Spray D”) are modeled in the computational fluid dynamics code ANSYS Fluent. Both injectors operate with n-dodecane as fuel at 150 MPa inlet pressures. The computational model includes cavitation effects to characterize any cavitating regions. Including compressibility of both liquid and vapor is found to be critical. Also, due to high velocity gradients and stresses in the nozzle, turbulent viscous energy dissipation is considered along with pressure work resulting from significant pressure changes in the injector.
2016-04-05
Technical Paper
2016-01-1025
Daniela Cempirkova, Rostislav Hadas, Lukáš Matějovský, Rolf Sauerstein, Matthias Ruh
Abstract As emission regulations tighten across various regions of the world there is a growing trend in the use of alternative fuels such as Ethanol being blended with gasoline. A notable case of Ethanol usage is found in South America with the widespread use of E100, which has no gasoline content and can often contain up to 10% water. Engine oil contamination by fuel is of major concern and under certain conditions can have negative effects on the durability of turbocharger components which come into contact with contaminated oil, particularly sliding bearings, but also compressor stage through crankcase ventilation system fed gas. The manner in which this effect takes hold can cause a decrease in the lubrication properties and increase in corrosiveness of the engine oil.
2016-04-05
Technical Paper
2016-01-1061
Guiping Yue, Wenbo Niu, Jian Zhao, Dandan Kong, Yun Li, Hangsheng Hou
Abstract Gear whine noise impacts customer perception of vehicle interior quietness in general and sound quality in particular. It has been a frequently occurred annoying phenomenon during vehicle development and much discussed topic regarding transmission NVH refinement in automotive industry. This work pertains to a transmission gear whine issue encountered in prototype evaluations during a vehicle program development process. The effort centers itself on the optimization of transmission gear macroscopic and microscopic parameters to fix the issue which is deemed unacceptable for customers. Specifically, by using multi-body dynamics approach, this work carries out a transmission system whine noise simulation based on optimal gear macro parameter selection and micro tooth flank modification. The obtained results show that the proposed design changes could successfully resolve the issue, which is verified by subsequent test measurement and confirmed by subjective evaluations.
2016-04-05
Technical Paper
2016-01-0393
Kevin P. Barbash, William V. Mars
Abstract We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
2016-04-05
Technical Paper
2016-01-0513
Yohei Miki, Hisao Futamata, Masahiko Inoue, Masashi Takekoshi, Kohbun Yamada
Abstract Unexpected noise may occur around air intake manifold when the throttle valve is quickly opened. In order to solve this problem, mesh is often mounted into the air flow between the intake manifold and the throttle body. In this study the effect of mesh design on the noise reduction was investigated. Several designs of the mesh were tested with an actual automobile and the developed test equipment taking advantage of an intake manifold unit, and the noise attenuation was discussed with measuring the noise and observation of the mesh deformation. Based on those experiments, the mesh design for noise reduction was optimized. Furthermore integration of mesh and rubber gasket was examined. Finally, rubber mesh-gaskets which provide sealing and noise attenuation for air intake has been proposed in this study.
2016-04-05
Technical Paper
2016-01-0517
Kentaro Kimura, Ryoji Habuchi, Tetsuya Kono, Tadashi Mori, Kaname Arimizu
Abstract To reduce cabin noise and vehicle weight (for lower fuel consumption), a lightweight soundproofing cover was developed as a countermeasure to sources of noise, using the Biot theory (vibration propagation theory in poroelastic materials). This report also presents the results of its application to a metal belt-type continuously variable transmission (CVT) used in Toyota Motor Corporation’s 2.0L vehicles.
2016-04-05
Technical Paper
2016-01-0801
Dimitri Seboldt, David Lejsek, Marlene Wentsch, Marco Chiodi, Michael Bargende
Abstract CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
2016-04-05
Technical Paper
2016-01-0181
Yasuki Hirota, Ryuichi Iwata, Takafumi Yamauchi, Manabu Orihashi, Masaki Morita
Abstract In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
2016-04-05
Technical Paper
2016-01-0257
Lili Feng, Predrag Hrnjak
Abstract This paper presents the experimentally obtained performance characteristics of an air conditioning-heat pump system that uses heat exchangers from a commercially available Nissan Leaf EV. It was found that refrigerant charge needed for cooling operation was larger than that for heating function with the test setup. The effects of: a). indoor air flow rate, b). outdoor air flow rate, and c). compressor speed on heating capacity and energy efficiency were explored and presented. Appropriate opening size of expansion valve that controlled subcooling for better energy efficiency was discussed and results were presented. Expansion valve opening size also strongly affected charge migration. Warm-up tests at different ambient conditions showed the necessity of a secondary heater to be reserved for very low ambient temperature.
2016-04-05
Technical Paper
2016-01-0488
Takashi Izawa, Motohiko Koushima
Abstract In order to determine the seizure limit of the main bearings of passenger vehicles under actual operating conditions, evaluations were conducted in environments containing noise factors (Various factors which designer cannot adjust and which make function vary were defined as noise factors in this paper.) [1,2] It was shown that noise factors have an effect on seizure limit performance in relation to performance under ideal test conditions (test conditions in which no noise is present). In relation to oil properties, the results showed that a reduction in viscosity as a result of dilution affected seizure limit performance. In relation to the shape of the sliding sections of the test shaft, seizure limit performance declined in a shaft in which the central section was swollen (“convex shaft” below).
2016-04-05
Journal Article
2016-01-0281
Alaa El-Sharkawy, Dipan Arora, Abd El-Rahman Hekal, Amr Sami, Muhannad Hendy
Abstract In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
2016-04-05
Journal Article
2016-01-0506
Daisuke Tomomatsu
Abstract This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
2016-04-05
Journal Article
2016-01-0515
Jee Young Youn, Seok Hwan Kim, Yong Sun (Steven) Jin
Abstract Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
2016-04-05
Journal Article
2016-01-0310
Xinran Tao, John R. Wagner
Abstract The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
2016-04-05
Journal Article
2016-01-0501
Seung Hoon Hong, Frank Yan, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Abstract Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
2016-04-05
Journal Article
2016-01-1184
Kyoung-Ku Ha, Chang Ha Lee, Chi Myung Kim, Sae Hoon Kim, Byung Ki Ahn
Abstract The subject of this study is a centrifugal compressor for Fuel Cell Electric Vehicles (FCEV). Recently there is a growing interest in FCEVs since they are considered a realistic solution to environmental regulations for passenger cars to reduce emissions. Water vapor is the only byproduct of a reaction in the Proton Electrolyte Membrane (PEM) fuel cell stack which generates electricity with oxygen from the surrounding air and hydrogen from a fuel tank. Auxiliary systems called Balance of Plant (BOP) serve to provide air and hydrogen to the stack in a correct ratio. The compressor is one of key components of this system because compression of the intake air brings an increase in efficiency and power density of the FCEV. This paper presents the characteristics of a 10 kW class centrifugal compressor with an oil-free bearing system. It consists of a shaft, two airfoil journal bearings and a pair of thrust bearings.
2016-04-05
Technical Paper
2016-01-1349
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract In the current scenario, the major thrust is to simulate the customer usage pattern and lab test using virtual simulation methods. Going ahead, prime importance will be to reduce the number of soft tool prototype for all tests which can be predicted in CAE. Automotive door slam test is significantly complex in terms of prediction through simulation. Current work focuses on simulating the slam event and deriving load histories at different mounting locations through dynamic analysis using LSDyna. These extracted load histories are applied to trimmed door Nastran model and modal transient analysis is performed to find the transient stress history. This approach has a significant advantage of less computation time and stress-convergence with Nastran for performing multiple design iterations compared to LSDyna. Good failure correlation is achieved with the test using this approach.
2016-04-05
Technical Paper
2016-01-0845
Michele Bardi, Gilles Bruneaux, Louis-Marie Malbec
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
2016-04-05
Technical Paper
2016-01-1397
Charles Yuan, Erik Kane, Abid Rahman
Abstract New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE.
2016-04-05
Technical Paper
2016-01-0671
Yan Chang, Margaret Wooldridge, Stanislav V. Bohac
Using exhaust gas recirculation (EGR) as a diluent instead of air allows the use of a conventional three-way catalyst for effective emissions reduction. Cooled EGR can also reduce fuel consumption and NOx emissions, but too much cool EGR leads to combustion instability and misfire. Negative valve overlap (NVO) is explored in the current work as an alternative method of dilution in which early exhaust valve closing causes combustion products to be retained in the cylinder and recompressed near top dead center, before being mixed with fresh charge during the intake stroke. The potential for fuel injection during NVO to extend the dilution limit of spark ignition combustion is evaluated in this work using experiments conducted on a 4-cylinder 2.0 L gasoline direct injection engine with variable intake and exhaust valve timing. The results demonstrate fuel injection during NVO can extend the dilution limit, improve brake specific fuel consumption (BSFC), and reduce CO and NOx emissions.
2016-04-05
Technical Paper
2016-01-1022
Ahsanul Karim, Anthony Morelli, Keith Miazgowicz, Brian Lizotte, Robert Wade
The use of Swirl-Vanes or Inlet Guide Vanes (IGV) in gas engines is well-known and has demonstrated their ability to improve compressor surge margin at low flow rates. But, the use of swirl-vanes is not too common in large diesel engine turbo-chargers where compressor housing inlet has some form of Casing-Treatment (CT). Recently, Ford engineers tested swirl-vanes in a diesel engine turbocharger where the compressor inlet had a ported shroud casing-treatment and the experimental data showed no improvement in surge margin. Computational Fluid Dynamics (CFD) analyses were performed to investigate reasons why the surge margin did not improve after introducing swirl-vanes at the compressor inlet. The CFD results showed strong interactions between swirling flow at the compressor inlet and flow stream coming out of the compressor inlet casing-treatment.
2016-04-05
Journal Article
2016-01-0851
Alexander Nygaard, Mireia Altimira, Lisa Prahl Wittberg, Laszlo Fuchs
Abstract It has been observed that intermittent injection leads to improved spray characteristics in terms of mixing and gas entrainment. Although some experimental work has been carried out in the past, the disintegration mechanisms that govern the breakup of intermittent jets remain unknown. In this paper we have carried out a systematic numerical analysis of the breakup of pulsated jets under different injection conditions. More specifically, the duty cycle (share of active injection during one cycle) is varied, while the total cycle time is kept constant. The advection of the liquid phase is handled through the Volume of Fluid approach and, in order to provide an accurate, yet computationally acceptable, resolution of the turbulent structures, the implicit Large Eddy Simulation has been adopted. The results show that the primary disintegration results from a combination of stretching, collision and aerodynamic interaction effects.
2016-04-05
Journal Article
2016-01-1344
Koushi Kumagai, Masaaki Kuwahara, Tsuyoshi Yasuki, Norimasa Koreishi
Abstract This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Viewing 121 to 150 of 6706

Filter

Subtopics