Criteria

Text:
Display:

Results

Viewing 61 to 35 of 35
2017-03-28
Technical Paper
2017-01-1025
Qinghe Luo, Baigang Sun, Xi Wang
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
2017-03-28
Technical Paper
2017-01-1075
Wen Chen, Reda Adimi, Xingfu Chen, Todd Brewer, Ling Shi
Abstract In CAE analysis of cylinder bore distortion, valve seat distortion, valve guide-to-seat misalignment and cam bore misalignment, nodal displacements on the cylinder bore inner surface and on the gage lines of valve seats, valve guides and cam bores are typically output. Best fit cylinders, best fit circles and best fit lines are computed by utilizing the output displacements of the deformed configuration. Based on the information of the best fit geometry, distortions and misalignments are assessed. Some commercial and in-house software is available to compute the best fit cylinders, best fit circles and best fit lines. However, they suffer from the drawback that only one best-fit geometry can be computed at a time. Using this kind of software to assess distortions and misalignments of engine components would be tedious and prone to error, since data transfer as well as the intermediate computation has to be done by hand, and the process is not automatic.
2017-03-28
Technical Paper
2017-01-1080
Yanan Wei, Shuai Yang, Xiuyong Shi, Jiaqi Li, Xuewen Lu
Abstract This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
2017-03-28
Technical Paper
2017-01-1091
Todd Brewer, Xingfu Chen
Abstract Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. There are three major failure modes for head gasket joint: fluid or gas leakage due to low sealing pressure, head gasket bead cracking due to high gap alternation and scrubbing/fretting due to pressure and temperature fluctuations causing lateral movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all three failure modes and the resulting design must consider all three major failure modes to provide acceptable performance.
2017-03-28
Technical Paper
2017-01-1090
Praveen Kumar Tumu, KungHao Wang, Juhchin Yang, Selvakumar Palani, Balaji Srinivasan
Abstract In the shop floor, cracking issue was noticed during assembly of valve seat and valve guide in the engine cylinder head, especially near the valve seating area. This paper reveals a non- linear finite element methodology to verify the structural integrity of a cylinder head during valve seat and valve guide assembly press-in operation under the maximum material condition, i.e., smallest hole size on cylinder head for valve seat and guide and largest diameter of valve seat and guide. Material and geometrical nonlinearities, and contact are included in this method to replicate the actual seat and guide press-in operation which is being carried out in shop floor. The press-in force required for each valve seat and valve guide assembly is extracted from simulation results to find out the tonnage capacity of pressing machine for cylinder head assembly line. Stress and plastic deformation due to assembly load are the criteria checked against the respective material yield.
2017-03-28
Technical Paper
2017-01-1066
Christoph Beerens, Alexander Mueller, Kimm Karrip
Abstract As emissions regulations and carbon footprint are more and more demandingly controlled, thermal efficiency of engine components must be optimized. Valve group components have to allow for ever increasing temperatures, endure aggressive condensates or even contribute directly to rising efficiency and emissions demands. Even with integrated and cooled exhaust manifolds, the exhaust valves are meeting full combustion temperatures, especially for stoichiometric combustion. MAHLE has developed a new technology in order to measure valve temperatures in real time, i.e. Transient Valve Temperature Measurement (TVTM). This is a complex methodology using thermocouples installed inside of the valves, offering the possibility to run the engine at different conditions, without any functional changes in the valve train system at all. Specifically valve rotation is not affected and thus temperatures all around the valve seat can be captured during rotation.
2017-03-28
Journal Article
2017-01-1472
Niels Pasligh, Robert Schilling, Marian Bulla
Abstract Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection.
2017-03-28
Technical Paper
2017-01-1147
Hyunjun Kim, Jingeon Kang, Dongsuk Kum
Abstract Input- and output-split hybrids using a single planetary gear (PG) can provide high fuel economy, but they tend to suffer from low acceleration performance. In order to improve their acceleration performance, speed reduction (multiplication) gears (SRG/SMG) have often been employed in various mass-produced split hybrids. In fact, adding one SRG (SMG) to input- or output-split hybrids can improve not only the acceleration performance, but also the fuel economy. Nevertheless, the full potentials of using SRGs (SMGs) have not yet been thoroughly investigated because the design space of input- and output-split configurations using one SRG (SMG) is huge; 432 configurations can be generated using two PGs where one PG is used as an SRG/SMG. Thus, in order to investigate the impacts of SRG (SMG) within a reasonable time, an efficient analysis procedure is required.
2017-03-28
Technical Paper
2017-01-1331
Marko Basic, Thomas Resch
Abstract This paper describes a numerical study of the effect of hollow crankshafts on crankshaft local strength and durability as well as slider bearing contact behavior. Crankshaft dynamic simulation for durability is still a challenging task, although numerical methods are already worldwide established and integrated part of nearly every standard engine development process. Such standard methods are based on flexible multi-body dynamic simulation, combined with Finite Element analysis and multi-axial fatigue evaluation. They use different levels of simplification and consider the most influencing phenomena relevant for durability. Lightweight design and downsizing require more and more detailed methods due to higher deformation of the crankshaft. This is especially true for hollow shafts, as present in motorsport design or aerospace applications, but also for standard engine having high potential for significant weight savings.
2017-03-28
Journal Article
2017-01-1124
Enrico Galvagno, Pablo Gutierrez, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper investigates the effect of the powertrain mounting system on the linear and nonlinear torsional dynamical behaviour of a transmission system. To this aim, two dynamic models, one with rigid mounts and the other with flexible mounts, are presented and compared: the first model considers only the torsional dynamics of transmission and driveline, while the second model includes also a 3 degrees-of-freedom powertrain block. The mechanical coupling and interaction between the powertrain block and transmission system is discussed and formulated. These models are then analyzed in terms of vibrational mode shapes, natural frequencies and Frequency Response Functions (FRFs); a sensitivity analysis of the main transmission parameters, e.g. the gear ratio, is also presented.
2017-03-28
Technical Paper
2017-01-0460
Erina Yasuda, Hiroki Kobayakawa, Seiji Amano, Yuto Otsuki, Tomohiro Ukai
Abstract The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
2017-03-28
Journal Article
2017-01-0011
Kesav Kumar Sridharan, Swaminathan Viswanathan
Abstract Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
2017-03-28
Journal Article
2017-01-0704
Noriyuki Takada, Takeshi Hashizume, Terutoshi Tomoda, Kazuhisa Inagaki, Kiyomi Kawamura
Abstract Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
2017-03-28
Journal Article
2017-01-0131
Chiranth Srinivasan, Chonglin Zhang, Haiyang Gao, De Ming Wang, Jody Slike
Abstract In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
2017-03-28
Journal Article
2017-01-1005
Yizhou Zhang, Jaal Ghandhi, David Rothamer
Abstract The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
2017-03-28
Journal Article
2017-01-1047
Yang Liu, Yuwei Li, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
2017-03-28
Journal Article
2017-01-1073
Robert Huber, Jan Clauberg
Abstract The object of this study is a new chain tensioner with two labyrinth seals. For the simulation of chain tensioners within the framework of multi-body dynamics, a physically orientated model to describe the fluid dynamics of the labyrinth seals is derived. The easiest way to describe labyrinth seals is to use maps obtained from measurements. As this is very time-consuming, methods of 1D and 2D fluid-mechanics are used in this work to model the labyrinth seals. The seals are characterized by physically motivated parameters e.g. coefficients of resistance or friction. As these parameters can be derived from geometric data, a very good forecast feasibility without experimental investigations is provided. For high accuracy simulations model parameters can be refined by experimental data. As many and highly complex parameters have to be identified, this refinement is very time-consuming and requires lots of experiments.
2017-03-28
Journal Article
2017-01-1032
Xavier Llamas, Lars Eriksson
Downsizing and turbocharging with single or multiple stages has been one of the main solutions to decrease fuel consumption and harmful exhaust emissions, while keeping a sufficient power output. An accurate and reliable control-oriented compressor model can be very helpful during the development phase, as well as for engine calibration, control design, diagnostic purposes or observer design. A complete compressor model consisting of mass flow and efficiency models is developed and motivated. The proposed model is not only able to represent accurately the normal region measured in a compressor map but also it is capable to extrapolate to low compressor speeds. Moreover, the efficiency extrapolation is studied by analyzing the known problem with heat transfer from the hot turbine side, which introduces errors in the measurements done in standard gas stands.
2017-03-28
Journal Article
2017-01-1043
Yang Liu, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
2017-03-28
Technical Paper
2017-01-1229
Ken Yamamoto, Nobuyasu Sadakata, Hidetoshi Okada, Yusuke Fujita
Abstract Electric oil pumps (EOP) for automobiles are used to lubricate and cool moving parts and supply oil pressure to components. Conventional EOPs consist of two separate units including a motor driver and a pump system comprised of a motor and a pump, which impedes layout flexibility for vehicles. To overcome this shortcoming, we have developed an ECU (electronic control unit)-integrated oil pump in which a driver, a motor and a pump are incorporated as a single unit. In the course of the project, we focused on improving vibration resistance and developing a compact design. The first challenge was to improve vibration resistance because of the driver located in close proximity to the powertrain. Since the driver is installed on the motor unit via electrically welded bus bars, the joints of the driver and the bus bar become susceptible to vibration.
2017-03-28
Journal Article
2017-01-0165
Jingwei Zhu, Stefan Elbel
Abstract Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycle is that the ejector cycle performance is sensitive to working condition changes which are common in many applications, including automotive AC systems. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. Ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect COP. This paper presents the experimental investigation of a new motive nozzle restrictiveness control mechanism for two-phase ejectors used in vapor compression cycles, which has the advantages of being simple, potentially less costly and less vulnerable to clogging.
2017-03-28
Journal Article
2017-01-0484
Harchetan Singh Aneja, Harmeet Singh, Aashish Parmar, Rohan Sharma
Abstract The automotive industry, known for its competitiveness & innovations globally, researches for continuous improvement of part performances along with reduction of cost & weight. These are amongst the top priority goals across all OEMs. In the long list of automobile parts, pipe clamps have paved their way of design through generations from being of metal to plastic that has expanded its scope of application & performance. In an automobile, plastic clamps are widely used to hold single or multiple water, fuel or brake pipes of various diameters to vehicle body at various locations such as underbody (prone to stone chipping) or engine room (prone to high temperatures), etc. Plastic clamps are preferred over metallic clamps for their cost, weight, performance & productivity. Primarily, in all application areas, a clamp must be able to hold the pipes with consistent & sufficient performance that is quantified through parameters such as thrust force and pipe removal force.
2017-03-28
Journal Article
2017-01-1313
Bao Wang, Jianhua Zhou, Min Xu
Abstract Manufacturing tolerances are inevitable in nature. For the bearings used in internal combustion engines, the manufacturing tolerances of roundness, which is of the micron scale, can be very close to the bearing radial clearance, and as a result the roundness could affect the lubrication of the bearings and thus affecting the friction loss of the engine. However, there is insufficient understanding of this mechanism. This study aims to find out the effects of the amplitude and the phase of journal roundness in the shape of ellipse on the lubrication of engine bearings. The elastohydrodynamic (EHD) theory is applied to model the bearing since the EHD model takes account of the elastic deformation of the journal and the bearing shell. The analysis of the DOE results shows the existence of roundness can be beneficial to the lubrication in some cases.
2017-03-28
Journal Article
2017-01-1316
Dhaval Vaishnav, Mohsen Ehteshami, Vylace Collins, Syed Ali, Alan Gregory, Matthew Werner
Abstract A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
2017-03-28
Technical Paper
2017-01-0188
Yoichiro Higuchi, Hiroyuki Kobayashi, Zhiwei Shan, Mikiharu Kuwahara, Yoshiharu Endo, Yuha Nakajima
Abstract As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
2017-01-10
Technical Paper
2017-26-0279
Onkar P Bhise, S Ravishankar
Abstract Polytetrafluoroethylene (PTFE) is used extensively as the inner tube material in various Aerospace and Industrial hose constructs. The fluoropolymer exhibits various unique mechanical properties from other fluoropolymers including chemical inertness, non-adhesiveness and low friction coefficient making it an attractive solution for hose applications. PTFE material can be modeled using various material modeling approaches including linear-elastic, hyperelastic and viscoplastic depending on the level of accuracy required in predicting material response. Fluoropolymers, like PTFE, are considered viscoelastic-viscoplastic materials. In other words, the material exhibits both viscous and elastic characteristics when undergoing deformation but also possesses behavior in which the deformation of the material also depends on the rate by which loads are applied.
2017-01-10
Technical Paper
2017-26-0267
Durga Prasad Mohapatra, Suhas Kangde, Abhijit Londhe, N N Srikanth, Pravin Singh
Abstract Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor.
2017-01-10
Technical Paper
2017-26-0274
Kaarthic Kaundabalaraman
Abstract Proper suitability of bolt preload is a pre-requisite whenever we go for component design change. In this paper we have considered connecting rod bolt for our analysis, where-in the design pre-requisite was whether same tightening specification could be carried forward from normal to fracture split type. The present work focuses on comparison of bolt design parameters, inertia force, contact pressure & bearing pressure calculation. Bolt safety factor was used as a parameter to check for the preload suitability with respect to engine max permissible speed. A systematic approach, considering guidelines from available bolt standard and literature was used for carrying out related analysis. For improving the quality of judgment, FEA tools along with durability testing was carried out at ARAI. In addition to this for better bolt preload control “Angle tightening method” of required specification was proposed, with results validated through physical testing.
2017-01-10
Technical Paper
2017-26-0367
Prasad S. Warwandkar, Ashutosh Dubey, Sonu Paroche
Abstract Wheel end bearing is one of the critical components of the vehicle as it directly faces the road loads for harsh operating environment. Bearing being a precisely manufactured component and rotating at high speed, utmost care is required while assembling as well as during operation. In operating condition wheel end is directly exposed to outside environment making it prone to entry of contamination. This contamination if not prevented from entering into wheel end through proper sealing it would cause lubricant contamination and consequently bearing failure. Bearing replacement and overall wheel end service is time consuming activity reducing the turn out time of the vehicle. In wheel ends, one side is sealed with the help of seal while the other side is protected by cap and gasket. This cap-gasket interface is very critical from sealing perspective and utmost importance needs to be taken while designing the same.
2017-01-10
Technical Paper
2017-26-0170
Pratik Pillai, Sivakumar Venugopal, Vijaysankar Gopalan
This paper deals with the study of the phenomenon of crevice corrosion of aluminium by using an example of a corrosion failure of a joint in the automobile coolant circuit. A number of joint failures were studied to understand the corrosion pattern and for various metallurgical aspects like chemistry, hardness and microstructure. The corrosion products were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This analysis indicated that the corrosion products mostly contained Aluminium Oxides with other contaminants like chlorides. The studies revealed that the clamped joint of the aluminium part and rubber hose led to the formation of a crevice with the engine coolant acting as the corrosive medium. The corrosion behavior at the location was affected by environmental factors like temperature, pH and chloride contamination.
Viewing 61 to 35 of 35

Filter

Subtopics