Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6718
2017-06-05
Technical Paper
2017-01-1820
Martin Sopouch, Josip Hozmec, Alessandro Cadario
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi–Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain – includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
2017-06-05
Technical Paper
2017-01-1809
Dhanesh Purekar
Engine noise is considered significant aspect of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues which is considered objectionable and impacts the customer perception. Gear whine could results due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro-geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. A gear whine case study is presented on the data collected on one of the Cummins diesel engines in the production environment. This paper also includes quick overview of measurement process, test cell environment, noise acceptance criteria considerations. This paper highlights the benefits of using production facility for developing next generation of product development from whine perspective.
2017-06-05
Technical Paper
2017-01-1815
Pranab Saha, Satyajeet P. Deshpande
This paper discusses the importance of dissipative sound package system in the automotive industry and how it works. Although this is not a new technique at this stage, it is challenging to meet the subsystem target levels that were originally developed for parts based on barrier decoupler concept. This paper reviews the typical construction of a dissipative system and then emphasizes the importance of different layers of materials that are used in the construction, including what they can do and cannot do. The paper also discusses the importance of proper manufacturing of the part.
2017-06-05
Technical Paper
2017-01-1839
Edward T. Lee
It is common for automotive manufacturers and off-highway machinery manufacturers to gain an insight of the system structural dynamics by evaluating the system inertance functions near the mount locations. The acoustic response at the operator’s ears is a function of the vibro-acoustic characteristics of the system structural dynamics interacting with the cavity, with the actual load applied at the mount locations. The overall vibro-acoustic characteristics can be influenced by the change in local stiffness. To analyze the response of a system, it is necessary to go beyond analyzing its transfer functions. The actual load needs to be understood and be applied towards the transfer function set. Finite element (FE) based analysis provides a good foundation for deterministic solutions. However finite element method suffers in accuracy as the frequency increases. Many NVH problems happen to be at the mid frequency range where solving the problem with the FE-only approach falls short.
2017-06-05
Technical Paper
2017-01-1823
Dennis J. Kinchen
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. As is typical of natural materials, the properties have variation resulting in a tolerance around the nominal specification which leads to differences in noise and vibration performance. A system that is robust to this variation is desired. The design and development process requires evaluation of these mounts to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system a library of mounts that include the range of production variation is studied however this is time consuming. In this paper, a methodology is described to reduce the hardware evaluation time and provide a recommended optimal solution that is robust in the presence of production mount property variation.
2017-06-05
Technical Paper
2017-01-1760
Weimin Thor, J. Stuart Bolton
Due the increasing concern with the acoustic environment within an automotive vehicle, there is an interest in measuring the acoustic properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
2017-06-05
Technical Paper
2017-01-1907
Yang Wang, Yong Xu, Xiao Tan
OPTIMIZATION OF THE POWERTRAIN MOUNTING SYSTEM VIA DOE METHOD Authors: Wang Yang*, Wang Hui*, Xu Yong* * NVH Section, Brilliance-Auto Engineering Research Institute, Shenyang, China, 110141 Key Words: NVH; DOE; Powertrain Mounting System; Analysis of Variance Research and/or Engineering Questions/Objective The vibration isolation performance of vehicle powertrain mounting system is mostly determined by the three-directional stiffnesses of each mount block. Because of the manufacturing tolerance and the coupling effect, the stiffnesses of mounts cannot be maintained stable. The purpose of this study was to find out the way to optimize the stiffnesses of mounts via the design of experiments (DOE). Methodology According to the DOE process, a full factorial design was implemented. The z-direction stiffnesses of three mount blocks in the mounting system were selected as the three analysis factors.
2017-06-05
Technical Paper
2017-01-1818
Ramya Teja, T. R. Milind, Rodney C. Glover, Sunil Sonawane
Helical gears are used more commonly than spur gears due to their higher load carrying capacity, efficiency and lower noise. Helical gear pairs consist of base and axial planes in the plane of action. Transmission Error (TE) is considered as a dominant source of gear whine noise so gears pairs are analyzed and designed for lower TE. In process of designing helical gears for lower TE, the shuttling moment can be a significant excitation source. A shuttling moment is caused by the shifting of the centroid of the tooth normal force back and forth across the lead. Shuttling force is produced by a combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from the gear box or transmission at is gear mesh frequency and harmonics. LDP provides shuttling force as a bearing force in the base plane direction at one edge of the face width only.
2017-06-05
Journal Article
2017-01-1767
Zhenghong Shi, Teik Lim
Nonlinear interaction between time-varying hypoid gear mesh and bearing support is investigated in this study. Mesh parameters are time-varying due to complex tooth profile of hypoid gear. Bearing stiffness is formulated based on real geometry and instantaneous orbital position of rolling elements. Linear model is firstly analyzed to study the modal frequency and mode shape variations under different stiffness ratio between gear mesh and bearing support. Then, nonlinear analysis is conducted to compare the differences between linear and nonlinear dynamic response based on specific nonlinear conditions of geared rotor system. It is found that the coupling between hypoid gear mesh and bearing support can be either strong or weak depending on the ratio between mesh stiffness along line-of-action (LOA) and bearing stiffness in radial direction. Parametric studies indicate that dynamic mesh force is sensitive to bearing clearance for certain stiffness ratio.
2017-06-05
Journal Article
2017-01-1776
Mohsen Kolivand, Glen Steyer, Clifford Krieger, Max-Ferdinand Stroh
Hypoid gears transmission error (TE) is a metric that is usually used to evaluate their NVH performance in component level. The test is usually done at nominal position as well as out of positions where the pinion and gear are moved along their own axis and also along offset direction to evaluate sensitivity of the measured TE to positional errors. Such practice is crucial in practical applications where the gear sets are inevitably exposed to off position conditions due to a) housing machining and building errors, b) deflections of housing, bearings, etc under load and c) thermal expansions or contractions of housing due to ambient temperature variations. From initial design to development stage, efforts should be made to design the gear sets to be robust enough to all combinations of misalignments emanated from all three mentioned categories.
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions. A series of parametric studies are also performed to analyze the effects of various shaft-bearing configurations and properties on the dynamic responses of the geared system.
2017-06-05
Journal Article
2017-01-1771
Mohamed El morsy, Gabriela Achtenova
Gear fault diagnosis is important in the vibration monitoring of any rotating machine. When a localized fault occurs in gears, the vibration signals always display non-stationary behavior. In early stage of gear failure, the gear mesh frequency (GMF) contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. This paper presents the value of optimal wavelet function for early detection of faulty gear. The Envelope Detection (ED) and the Energy Operator are used for gear fault diagnosis as common techniques with and without the proposed optimal wavelet to verify the effectiveness of the optimal wavelet function. Kurtosis values are determined for the previous techniques as an indicator parameter for the ability of early gear fault detection. The comparative study is applied to real vibration signals.
2017-06-05
Journal Article
2017-01-1909
Joel Bruns, Jason Dreyer
The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence on dynamic amplitude and preload; however, analysis of these devices has not fully addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers. A reduced-order multi-physics model of the mount assembly is developed using parameters derived from bench testing of the different elastomeric components and the fluid system.
2017-03-28
Technical Paper
2017-01-1240
Koki Matsushita
Abstract For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
2017-03-28
Technical Paper
2017-01-1147
Hyunjun Kim, Jingeon Kang, Dongsuk Kum
Abstract Input- and output-split hybrids using a single planetary gear (PG) can provide high fuel economy, but they tend to suffer from low acceleration performance. In order to improve their acceleration performance, speed reduction (multiplication) gears (SRG/SMG) have often been employed in various mass-produced split hybrids. In fact, adding one SRG (SMG) to input- or output-split hybrids can improve not only the acceleration performance, but also the fuel economy. Nevertheless, the full potentials of using SRGs (SMGs) have not yet been thoroughly investigated because the design space of input- and output-split configurations using one SRG (SMG) is huge; 432 configurations can be generated using two PGs where one PG is used as an SRG/SMG. Thus, in order to investigate the impacts of SRG (SMG) within a reasonable time, an efficient analysis procedure is required.
2017-03-28
Journal Article
2017-01-1472
Niels Pasligh, Robert Schilling, Marian Bulla
Abstract Rivets, especially self-piercing rivets (SPR), are a primary joining technology used in aluminum bodied vehicles. SPR are mechanical joining elements used to connect sheets to create a body in white (BiW) structure. To ensure the structural performance of a vehicle in crash load cases it is necessary to describe physical occurring failure modes under overloading conditions in simulations. One failure mode which needs to be predicted precisely by a crash simulation is joint separation. Within crash simulations a detailed analysis of a SPR joint would require a very high computational effort. The conflict between a detailed SPR joint and a macroscopic vehicle model needs to be solved by developing an approach that can handle an accurate macroscopic prediction of SPR behavior with a defined strength level with less computational effort. One approach is using a cohesive material model for a SPR connection.
2017-03-28
Technical Paper
2017-01-1333
Sasikumar P, C. Sujatha, Chinnaraj K.
Abstract In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
2017-03-28
Technical Paper
2017-01-1709
Zhigang Wei, Sarat Das, Ryan Barr, Greg Rohrs, Robert Rebandt, Xiao Wu, HongTae Kang
Abstract Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
2017-03-28
Technical Paper
2017-01-0860
PengBo Dong, Jun Yamauchi, Keiya Nishida, Youichi Ogata
Abstract With the aim of improving engine performance, recent trend of fuel injection nozzle design followed by engineers and researchers is focusing on more efficient fuel break up, atomization, and fuel evaporation. Therefore, it is crucial to characterize the effect of nozzle geometric design on fuel internal flow dynamics and the consequent fuel-air mixture properties. In this study, the internal flow and spray characteristics generated by the practical multi-hole (10 holes) nozzles with different nozzle hole length and hole diameter were investigated in conjunction with a series of computational and experimental methods. Specifically, the Computational Fluid Dynamics (CFD) commercial code was used to predict the internal flow variation inside different nozzle configurations, and the high-speed video observation method was applied to visualize the spray evolution processes under non-evaporating conditions.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
Abstract In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-0323
Rosa Radovanovic, Samuel J. Tomlinson
Abstract Press-in-place gasket stability is required to maintain consistent and predictive sealing compression in a sealing joint utilizing a housing groove and a mating component sealing surface. Without proper balance between height of the groove and height of the gasket, the sealing joint can be compromised. Hence, automotive engineers balance design variables with the desire to achieve long term sealability and gasket stability. The percentage of gasket out of groove was varied to study the interactions of this design control and the resultant deviation of gasket centerline to the groove centerline. Finally, an optimal percentage of gasket out of groove is recommended.
2017-03-28
Technical Paper
2017-01-0366
Xingyu Liang, Yuesen Wang, Shuhe Huang, Guichun Yang, Lin Tang, Guoqi Cui
Abstract Due to the mechanical forces under static conditions, the engine cylinders cross section will not be a round circle any more once they are installed. The deformation of an engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting in worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6-type engine body model was built and meshed with Hypermesh suit software. Then, cylinder deformation under static condition has been simulated and analyzed. First of all, experimental work was done to verify the engine model. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program was developed to process the data.
2017-03-28
Technical Paper
2017-01-0387
Deepak Anand Subramanian, Shanmugam Mathaiya, V Srinivasa Chandra
Abstract In today’s commercial vehicle scenario, designing and developing a component which will never fail throughout its lifespan is next to impossible. For a long time especially in the field of automotive, any crack initiation shall deem the component as failed and the design requires further modification. This paper deals with studying the failure of one such component and understanding the effect the crack has on the overall life of the component i.e. understanding the remnant life of the component. The component under study was gear shift lever bracket and is mounted on the engine exhaust manifold. It experiences two types of loads: inertial load due to the engine vibration and gear shift load. Frequent failures were observed in the field and in order to simulate it at lab, an accelerated test approach was adopted. The engine operating speed was used to identify the possible excitation frequency which the component might experience.
2017-03-28
Technical Paper
2017-01-0416
Vishal Barde, Baskar Anthonysamy, Ganeshan Reddy, Senthil S, Visweswara lenka, Gurdeep Singh Pahwa
Abstract New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
2017-03-28
Technical Paper
2017-01-0244
Joshua Lyon, Junheung Park, Yakov Fradkin, Jeff Tornabene
Abstract We describe an optimization model developed by Ford Motor Company to reallocate stamped parts between facilities when business conditions change. How can the business meet new targets when demand starts to exceed existing capacity? Likewise, how can it respond when demand is lower than expected? Sometimes the business can reduce costs by transferring production to a different location or by outsourcing parts. We describe in this paper how mathematical optimization can identify solutions that balance both logistical and outsourcing costs. We explain the algorithm and demonstrate with a small example how it recommends sourcing plans that minimize cost.
2017-03-28
Technical Paper
2017-01-0543
Oliver Hofmann, Shijin Han, Daniel Rixen
Abstract This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
2017-03-28
Technical Paper
2017-01-0822
Jim Elkjær Bebe, Kasper Steen Andersen
Abstract The purpose of this work is to determine essential spray parameters for a specific nozzle to be integrated in computational fluid dynamics (CFD) simulations of selective catalytic reduction systems (SCR) based on the injection of urea water solution (UWS). As Dinex does not develop nozzles, but rather integrate nozzles from a variety of manufacturers, the spray data made available is of an inhomogeneous quality. This paper presents the results of a simple, partial validation and calibration of a CFD simulation performed with the commercial CFD code AVL FIRE 2014.2 using the Lagrangian discrete droplet method. The validation is based on a novel and low cost experimental setup, where the experimental method utilizes high-speed imaging to provide spray cone angle, axial spray penetration length and spray plume droplet density.
2017-03-28
Technical Paper
2017-01-0693
Seungwoo Kang, Wonkyu Cho, Choongsik Bae, Youngho Kim
Abstract This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
2017-03-28
Technical Paper
2017-01-1080
Yanan Wei, Shuai Yang, Xiuyong Shi, Jiaqi Li, Xuewen Lu
Abstract This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
2017-03-28
Technical Paper
2017-01-0684
Vickey B. Kalaskar, Raphael Gukelberger, Bradley Denton, Thomas Briggs
Abstract Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
Viewing 1 to 30 of 6718

Filter

Subtopics