Display:

Results

Viewing 1 to 30 of 173
WIP Standard
2014-09-23
Solid chemical oxygen supplies of interest to aircraft operations are 'chlorate candles' and potassium superoxide (KO(sub)2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
WIP Standard
2014-08-26
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Standard
2014-07-11
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
Standard
2014-06-24
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentiall ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
WIP Standard
2014-05-09
The information provided in SAE AIR825/6 applies to On Board Oxygen Generating Systems (OBOGS) - Molecular Sieve, that utilize the ability of molecular sieve materials by using Pressure Swing Adsorption Process (PSA) to separate and concentrate oxygen in the product gas from the surrounding air, respectively air provided by any compressor or by the aircraft engine (so called: Bleed Air), and to provide this oxygen enriched air or product gas as supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft. The distribution system and the provided oxygen concentration have to fulfill the respective FAA/JAA regulations. Equipment using this technology to provide supplemental oxygen for breathing gas supply of crew and passengers onboard aircraft, the suitable breathing gas oxygen partial pressure or oxygen concentration requirements are specified in AIR825/2 and the oxygen purity requirements in AS8010. NOTE: OBOGS has never been certified for commercial aircraft. The FAR/JAR 25 as well as FAR 121/JAR-OPS need to be reviewed and if necessary amended prior to introduction of OBOGS.
WIP Standard
2014-05-08
This SAE Aerospace Recommended Practice (ARP) will provide general guidelines and procedures for servicing and maintaining oxygen systems. Such methods and procedures may be applied to gaseous, liquid, chemical and portable oxygen systems. These guidelines and recommendations will be provided to engineering and maintenance personnel for airlines, modification centers and third party maintenance contractors, to be used while performing maintenance on oxygen systems and components.
WIP Standard
2014-04-02
This document provides guidance concerning the maintenance and serviceability of oxygen cylinders beginning with the quality of oxygen that is required, supplemental oxygen information, handling and cleaning procedures, transfilling and marking of serviced oxygen assemblies. This document attempts to outline in a logical sequence oxygen quality,serviceability and maintenance of oxygen cylinders.
Standard
2014-02-13
The scope of this document is to provide a guideline for the preparation of a plan for testing of in-service chemical oxygen generators to confirm their design useful life. The test program should also allow determination with a sufficient level of confidence, whether generators are suitable for further use (i.e., life extension, or if the useful life limit has been reached).
WIP Standard
2014-01-29
This guide is intended to promote safe designs, operations and maintenance on aircraft and ground support oxygen systems. This is also a summary of some work by the ASTM G 4 Committee related to oxygen fire investigations and design concerns to reduce the risk of an oxygen fire. There have been many recent technological advances and additional test data is available for evaluating and controlling combustion hazards in oxygen equipment. Standards that use this new information are rapidly evolving. A guide is needed to assist organizations and persons not completely familiar with this process to provide oxygen systems with minimum risks of combustion. This guide does not necessarily address all the detailed issues and provide all data that will be needed. For a complete analysis, supplemental publications need to be consulted. This guide does discuss the basics of oxygen systems fire hazards. The hazard analysis process is discussed and a simple example to explain this process. Also, this guide does not address the overall system safety issues normally evaluated in aircraft programs.
Standard
2014-01-07
This document presents a glossary of many of the terms that can be found in literature covering issues related to aviation oxygen systems and associated topics. Such a listing can never be all inclusive but the majority of important terms are anticipated to be included for reference.
WIP Standard
2013-11-18
The purpose of this standard is to establish optimum standards for crew demand and pressure-breathing oxygen mask assemblies for use by crew members in civil aircraft. This standard covers both general type and quick-donning type mask assemblies in the following classes: a. Class A, oronasal, demand b. Class B, oronasal, pressure-demand c. Class C, full face, demand d. Class D, full face, pressure-demand
WIP Standard
2013-11-18
The purpose of this Report was to provide guidance to the commercial transport aviation industry in the selection and usage of oxygen equipment for high altitude transport aircraft. This Report reflects the consensus of views of the various parts of the industry contacted. The document is based on sound engineering and physiological principles and research data. The recommendations embodied in this document are applicable to commercial transport aircraft for operations between 8,000 and 40,000 ft. altitude.
WIP Standard
2013-11-18
The scope of this document is to provide a list of documents of types pertaining to the effects of oxygen on ignition and combustion of materials. Consolidating these references in one place makes it easier to find documents of this type as these references are difficult to locate.
WIP Standard
2013-10-23
The intent of this SAE Aerospace Information Report (AIR) is to describe the effects of the environmental changes on human physiology and the protection required to avoid negative consequences resulting from altitude exposure. A brief presentation of basic terms and considerations required to discuss the topic of human physiology at altitude are followed by an overview of the cardiovascular and respiratory systems. Issues specifically related to human exposure to altitude are then discussed. Hypoxia, hyperventilation, barotrauma, and decompression sickness (DCS) are each addressed: hypoxia is defined as an insufficient supply of oxygen to the tissues, hyperventilation is an excessive rate of ventilation with ultimate consequences on acido-basic equilibrium, barotrauma is injury caused by pressure: most commonly referencing injury to the walls of the Eustachian tube and the ear drum due to the difference between atmospheric and intratympanic pressures, and DCS is related to an excess of nitrogen in the body tissues.
WIP Standard
2013-07-12
This Aerospace Recommended Practice (ARP) describes test equipment and methods used for testing closed cycle or semiclosed cycle breathing devices of short duration that are designed to operate with a high partial pressure of oxygen in the breathing circuit. It is intended to supplement ARP1109 and ARP1398 for applications involving closed cycle or semiclosed cycle breathing equipment which may be evaluated to the requirements of AS8031 and/or AS8047.

This ARP recommends performance requirements for test equipment used to simulate human respiration in the testing of aviation protective breathing equipment (PBE). This ARP doeS not, however, preclude the need for human testing.

WIP Standard
2013-07-12
This ARP delineates requirements for system cleanliness, test gas supply system, test stand design, environmental chamber definition, instrumentation, dynamic test equipment and testing procedures.

The purpose of this SAE Aerospace Recommended Practice (ARP) is to establish or outline, or both, methods and procedures for use in testing oxygen equipment.

WIP Standard
2013-06-14
The purpose of this document is to give the reader an overview of the document package which makes up AIR825, Introduction to Oxygen Equipment for Aircraft, and a basic overview (see Section 4) of the operational concerns driven by human physiology during altitude exposure.
Standard
2013-06-11
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for cleaning aircraft oxygen equipment such as tubing, pieces, parts (including regulator and valve parts), cylinders and ground-based equipment that may be used to support aircraft oxygen systems. This revision introduces a cleanliness coding scheme that can be referenced as a requirement, and/or referenced to identify compliance to meeting such a requirement. These methods may apply to gaseous and liquid oxygen equipment. This document specifies work area details, methods to select suitable cleaning agents, cleaning methods, test methods to verify cleanliness level, and methods of packaging the components and parts after cleaning. Technicians designated to clean oxygen equipment must be qualified and trained to clean oxygen equipment. This ARP is applicable to metallic and non-metallic parts.
Standard
2013-05-20
Currently, existing civil aviation standards address the design and certification of oxygen dispensing devices that utilize oxygen sources supplying at least 99.5% oxygen. This Aerospace Information Report discusses issues relating to the use in the passenger cabin of oxygen enriched breathing gas mixtures having an oxygen content of less than 99.5% and describes one method of showing that passenger oxygen dispensing devices provide suitable hypoxia protection when used with such mixtures.
Standard
2013-04-04
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
WIP Standard
2013-03-07
This document describes technical approaches that can be applied to show that proposed oxygen equipment and systems achieve suitable oxygenation in users. These approaches can be used to demonstrate that items under test meet performance criteria sufficient to justify certification for use in aircraft applications.
WIP Standard
2013-03-07
This AIR provides an overview of several emerging technologies for on board oxygen generation. It complements AIR 825/6, which covers pressure swing adsorption using zeolite molecular sieve beds to concentrate and separate oxygen from atmospheric gases. Topics covered here include use of dense ion conductive ceramics, electrolysis of water, high pressure chemical generation, membrane separations, and use of carbon based molecular seive beds.
WIP Standard
2013-02-25
This Aerospace Standard (AS5727) will provide the basis for a certification approach and contain the methods or criteria for verification of performance required of Oxygen Dispensing Units for use by cabin occupants in the range of 40,000 to 45,000 ft. cabin altittude. 1.1 Purpose - This AS is intended to identify the performance required of Personal Oxygen Dispensing Units in the range of 40,000 to 45,000 ft.
Standard
2012-12-03
This report provides information on the design and use of aircraft oxygen systems. It explains the physiological oxygen requirements of the human body in both a normal environment and in an hypoxic environment. It includes an overview of the continuous flow, demand and pressure demand, and liquid oxygen systems. A basic understanding of how each system operates is then specifically addressed in its own titled section. The charts, tables, and schematics provide a specific example of a theoretical oxygen system design and the calculations showing how that system would meet the regulations established by the FAR's. A comprehensive overview of the theoretical oxygen requirements of the human body at altitude is also provided. A detailed list of specifications and standards applicable to aircraft oxygen systems is included.
Standard
2012-11-06
Liquid oxygen supply systems for breathing oxygen for the crew and/or passengers of transport aircraft require design and installation considerations, which are detailed herein. AIR 825, Oxygen Equipment for Aircraft, contains general information on determination of breathing oxygen requirements and equipment for the crew and passengers of transport category aircraft. This document covers the more specific requirements for either a 70 or 300 psig liquid oxygen system. The standard 70 psig nominal pressure is recommended for use except in cases of excessive pressure drop, flow requirements, and some continuous flow regulators which may require the 300 psig nominal pressure system. AS 861, Minimum General Standards for Oxygen Systems and AIR 822, Oxygen Systems for General Aviation Aircraft, also contain general applicable information. Note: When Military Specification components are referenced in this document, it is intended that this be interpreted as a guide and that components functionally equivalent to these units may be used.
Standard
2012-10-15
This ARP covers a procedure to be used in the determination of 0.05 to 0.3 ppm of chlorine in oxygen from any type of generator used for emergency or other life-support systems. The methyl orange method described can be considered as a referee technique. Instrumental analysis is also given in Section 8.
Viewing 1 to 30 of 173

Filter

  • Magazine
    4
  • Technical Paper
    3
  • Standard
    166
  • Collection
    0
  • Book
    0
  • Article
    0