Criteria

Text:
Display:

Results

Viewing 1 to 30 of 11932
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
The automotive industry continues to develop new technologies aimed at reducing overall vehi-cle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of tech-nologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital to-wards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is impera-tive that these NVH challenges be understood and solved.
2017-05-18
Journal Article
2017-01-9375
Lukas Moeltner, Lucas Konstantinoff, Verena Schallhart
Abstract The increasingly stringent emission legislation worldwide and the demand for independence from fossil energy carriers represent major challenges for the future development of diesel engines, particularly for maintaining the diesel engine’s positive characteristics, such as its dynamic driving performance and fuel economy, while drastically reducing emissions. This survey investigates alternative fuel blends used in a state-of-the-art EURO 6 diesel engine with different shares of biomass to liquid, hydrotreated vegetable oils and fatty acid methyl ester, which present a possibility to meet these requirements. In particular, the reduction of particulate matter and, as a result, the possibility to reduce nitrogen oxides emissions holds remarkable potential for the application of synthetic fuels in diesel engines. The investigated fuel blends generally demonstrate good applicability when used in the test engine with standard settings.
2017-04-19
Technical Paper
2017-01-5000
Alexander Koder, Florian Zacherl, Hans-Peter Rabl, Wolfgang Mayer, Georg Gruber, Thomas Dotzer
Abstract An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system.
2017-03-28
Technical Paper
2017-01-0262
Taewon Kim, Xi Luo, Mustafa Al-Sadoon, Ming-Chia Lai, Marcis Jansons, Doohyun Kim, Jason Martz, Angela Violi, Eric Gingrich
Abstract Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
2017-03-28
Technical Paper
2017-01-1281
Rajesh Kumar, Olivier Laget, Guillaume Pilla, Guillaume Bourhis, Roland Dauphin, Loic de Francqueville, Jean-Pascal Solari
Abstract Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. The aim of the current research program (OOD: Octane On Demand) is to use the octane number as a tuning parameter to simultaneously make the engine more efficient and reduce CO2 emissions. The idea is to prevent knock occurrence by adapting the fuel RON injected in the combustion chamber. Thus, the engine cycle efficiency is increased by keeping combustion phasing at its optimum. This is achieved by a dual fuel injection strategy, involving a low-RON base fuel (Naphtha or Low RON cost effective fuel) and a high-RON octane booster (ethanol). The ratio of fuel quantity on each injector is adapted at each engine cycle to fit the RON requirement as a function of engine operating conditions. A first part of the project, described in [18], was dedicated to the understanding of mixture preparation resulting from different dual-fuel injection strategies.
2017-03-28
Technical Paper
2017-01-1282
Ashish Jaiswal, Tarun Mehra, Monis Alam, Jatin Agarwal, Harshil Kathpalia
Abstract Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
2017-03-28
Technical Paper
2017-01-1283
Valentin Soloiu, Remi Gaubert, Martin Muinos, Jose Moncada, Thomas Beyerl, Gustavo Molina, Johnnie Williams
Abstract This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it’s neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2.
2017-03-28
Technical Paper
2017-01-1287
Markus Sartory, Markus Justl, Patrick Salman, Alexander Trattner, Manfred Klell, Ewald Wahlmüller
Abstract Hydrogen as carbon-free energy carrier, produced from renewable sources like wind, solar or hydro power, is a promising option to overcome the impacts of the anthropogenic climate change. Recently, great advances regarding the early market introduction of FCVs have been achieved. As the availability of hydrogen refueling stations is highly limited, a modular, scalable and highly efficient hydrogen supply infrastructure concept is presented in this paper. The focus lies on cost-effectiveness and flexibility for the utilization in different applications and for growing markets. Based on the analysis of different use cases, the requirements for the newly developed concept are elaborated. The modular system design, utilizing a standardized high pressure PEM electrolysis module, allows a scalable hydrogen production of up to several hundred kilograms per day.
2017-03-28
Technical Paper
2017-01-1288
Noriko Shisa, Shinsuke Ishihara, Yougui Huang, Mikio Asai, Katsuhiko Ariga
Abstract Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
2017-03-28
Technical Paper
2017-01-1292
Saiful Bari, Idris Saad
Abstract Diesel engine can be run with biodiesel which has the potential to supplement the receding supply of crude oil. As biodiesel possess similar physiochemical properties to diesel, most diesel engines can run with biodiesel with minimum modifications. However, the viscosity of biodiesel is higher, and the calorific value is lower than diesel. Therefore, when biodiesel is used in diesel engines, it is usually blended with diesel at different proportions. Use of 100% biodiesel in diesel engines shows inferior performance of having lower power and torque. Improving in-cylinder airflow characteristic to break down higher viscous biodiesel and to improve air-fuel mixing are the aims of this research. Therefore, guide vanes in the intake runner were used in this research to improve the performance of diesel engine run with biodiesel.
2017-03-28
Technical Paper
2017-01-1145
Eric De Hesselle, Mark Grozde, Raymond Adamski, Thomas Rolewicz, Mark Erazo
Abstract Hybrid electric vehicles are continuously challenged to meet cross attribute performance while minimizing energy usage and component cost in a very competitive automotive market. As electrified vehicles become more mainstream in the marketplace, hybrid customers are expecting more attribute refinement in combination with the enhanced fuel economy benefits. Minimizing fuel consumption, which tends to drive hybrid powertrain engines to operate under lugging type calibrations, traditionally challenge noise, vibration, and harshness (NVH) metrics. Balancing the design space to satisfy the cost metrics, energy efficiency, noise and vibration & drivability under the hybrid engine lugging conditions can be optimized through the use of multiple CAE tools. This paper describes how achieving NVH metrics can put undesirable boundaries on Powertrain Operation which could affect other performance attributes.
2017-03-28
Technical Paper
2017-01-1148
Toumadher Barhoumi, Hyunjun Kim, Dongsuk Kum
Abstract Finding optimal split hybrid configurations through exhaustive search is almost intractable, mainly due to the huge design space, e.g. 252 compound split configurations using two planetary gear sets (PG). Thus, a systematic exhaustive design methodology is required to find optimal configurations. While most of the prior studies proposed methodologies that assess the performance within the physical design space, i.e. based on the powertrain configurations, this paper proposes a compound lever-based comprehensive design methodology. The (virtual) compound lever is an attractive design tool defined by two design variables, i.e. α and β, that omits the redundancy existing within the physical design space, thus, reduces the computational load. The proposed method explores the entire (virtual) compound lever design space to find optimal compound split configurations with outstanding fuel economy and acceleration performance.
2017-03-28
Technical Paper
2017-01-0774
Ehsan Faghani, Pooyan Kheirkhah, Christopher W.J. Mabson, Gordon McTaggart-Cowan, Patrick Kirchen, Steve Rogak
Abstract High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0876
Senthil Kumar Masimalai, Jai Kumar Mayakrishnan
Abstract Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
2017-03-28
Technical Paper
2017-01-0861
Balasubramanian N., Karthick Durairaj, Jayabalan Sethuraman
Abstract Asian countries hold a vast majority of the global two-wheeler population. Currently majority of these two wheelers are fueled by carburetors owing to their low cost and ease of maintenance. As these countries try to adopt emission norms similar to that of Euro 6 in a few years from now, they will be migrating to an injection system like port fuel injection (PFI), as it offers good control over emissions by using closed loop corrections, based on the exhaust lambda feedback. Stanadyne R&D has developed an innovative injection system that can be applied for such port fuel injection in two-wheelers. In this innovative design, the pump and injector are integrated into a single unit, making the system simple, compact and less expensive. The integrated injector uses a solenoid and spring arrangement, for pressurizing the fuel in a small chamber, and consumes less current. The pressurized fuel is then injected through orifice to produce spray in the intake port.
2017-03-28
Technical Paper
2017-01-0866
Edwin N. Quiros, Karl B.N. Vergel, Ernesto B. Abaya
Abstract This paper presents a preliminary study to estimate, using on-road and laboratory tests, the mileage range of liquefied petroleum gas (LPG) as an alternative fuel for diesel-fed public utility jeepneys in the Philippines. Data from the study would be used by the Philippine Department of Energy to formulate and implement alternative fuel programs for public transport. On-road fuel consumption, load factor, and GPS speed data from selected in-use LPG and diesel jeepneys plying a chosen urban route were gathered to develop corresponding drive cycles for chassis dynamometer testing at 100% load factor were conducted to estimate an upper limit for fuel consumption. Measured on-road diesel jeepney mileage was about 6.7 km/liter at 63.5% load factor while that for LPG jeepney was 3.8-4.2 km/liter at 59.8% load factor. Drive cycle tests yielded 5.2 km/liter for diesel and 2.6-3.1 km/liter for LPG.
2017-03-28
Technical Paper
2017-01-0873
Senthilkumar Masimalai, Jai Kumar Mayakrishnan, Natraj Ganesan
Abstract This paper presents a comprehensive study on using MO (Mahua oil) as fuel effectively in a diesel engine by adopting emulsification and TBC (Thermal Barrier Coating) techniques. A mono cylinder diesel engine was used for the study. Initially trials were made on the engine using neat diesel (ND), Neat Mahua oil (NMO) as fuels. In the second phase, NMO was converted into its stable emulsion (called as MOE) and tested in the engine. Finally thermal barrier coating of 0.2 mm was made on the piston, valves and cylinder head of the engine using the ceramic power of Al2O3 and the engine was tested using NMO and MOE as fuels in the TBC engine. Results indicated improvement in BTE (brake thermal efficiency) with MOE as compared to NMO mainly at high power outputs in the unmodified engine. The maximum BTE was found as 31.5% with ND, 27.2% with NMO and 30.4% with MOE at the peak power output.
2017-03-28
Technical Paper
2017-01-0872
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Shubham Gupta, Salim Abbasbhai Channiwala
Abstract In this study, A Gasoline Passenger car (Euro IV) was experimentally investigated for performance and emissions on three different fuels i.e. Gasoline, LPG (Liquefied Petroleum Gas) and DME (Di-methyl ether) blend with a concentration of 20% by mass in LPG (DME20). In particular, emission characteristics (including Hydrocarbon, CO, NOx, and CO2) over the Modified Indian Driving Cycle (MIDC) and fuel economy were investigated at the Vehicle Emission Laboratory (VEL) at the CSIR- Indian Institute of Petroleum, Dehradun, India. The experimental results showed that Vehicle complies with Euro IV legislation on gasoline and LPG fuel, however, showed higher NOx Emissions on DME 20 fuel. LPG kit was reconfigured for DME and LPG blend to bring down the emissions within the specified emission limits. The Emission values observed for DME20 were 0.635 g/km (CO), 0.044 g/km (THC), and 0.014 g/km (NOx) against the Euro IV limits of 1.0 g/km, 0.1 g/km and 0.08 g/km, respectively.
2017-03-28
Technical Paper
2017-01-0875
Valentin Soloiu, Jose Moncada, Martin Muinos, Aliyah Knowles, Remi Gaubert, Thomas Beyerl, Gustavo Molina
Abstract This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
2017-03-28
Technical Paper
2017-01-0869
Job Immanuel Encarnacion, Edwin Quiros
Abstract The Philippine Biofuels Act of 2006 (RA 9367) requires commercial diesel fuel to be mixed with Coconut Methyl Ester (CME) in accordance with the Philippine Clean Air Act of 1999 (RA 8749). As of 2015, the blend percentage is at 2% CME v/v, contrary to the scheduled 5% as stipulated in the biofuels act. Researches done locally showing the performance and emissions of CME-fueled engines are few and thus the basis for the CME percentage increase is still questionable and hampers the drive for the further implementation of the policy. The study investigates the influence of varying percentages of CME blends (2%, 5%, 10%, 15%, 20% v/v) to the performance and emissions of a heavy-duty turbocharged common rail direct injection (CRDI) engine. The engine is run at steady state at partial load (50Nm and 250 Nm) and at near full load (500Nm). Each run is set at three pedal positions, α (25%, 50% and 60%), controlled directly from the engine control unit.
2017-03-28
Technical Paper
2017-01-0870
Yuanxu Li, Xiangyu Meng, Karthik Nithyanandan, Chia-Fon Lee, Zhi Ning
Abstract Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-0090
Ondrej Santin, Jaroslav Beran, Jaroslav Pekar, John Michelini, Junbo Jing, Steve Szwabowski, Dimitar Filev
Abstract Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
2017-03-28
Technical Paper
2017-01-0136
Apostolos Karvountzis-Kontakiotis, Apostolos Pesiridis, Hua Zhao, Fuhaid Alshammari, Benjamin Franchetti, Ioannis Pesmazoglou, Lorenzo Tocci
Abstract Modern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25ℓ heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0263
Krishnaraj Udayachalam, Manan Trivedi, Ziliang Zheng, Amit Shrestha, Naeim Henein
Abstract SASOL IPK is a low cetane number synthetic fuel formed from coal by the Fischer-Tropsch process which can be used as an extender to JP8, currently used in military ground vehicles. This paper presents two surrogates developed considering the following criteria: (a) availability of kinetic combustion models for each component, (b) smallest number of components to reduce computation time and cost, (c) matching the following properties of target fuel DCN, distillation curve, density, LHV, MW and H/C ratio. The autoignition and combustion characteristics of the surrogates were validated in IQT according to ASTM D6890-10a. Surrogate formulation strategy involves an equation to calculate DCN of the surrogate mixture from the DCN of each component. The linear equation commonly used for such calculations was modified to include a multiplier, based on regression analysis, for each component to produces DCN values that agree well with the measured DCN in the IQT.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
Viewing 1 to 30 of 11932