Criteria

Text:
Display:

Results

Viewing 1 to 30 of 496
2017-09-04
Technical Paper
2017-24-0162
Harald Stoffels, Jens Dunstheimer, Christian Hofmann
The application of a turbocharger, having an electric motor/generator on the rotor was studied focusing on the electric energy recuperation on a downsized gasoline internal combustion engine, using 1D-calculation approaches. Using state-of-the art optimization techniques, the settings of the valve timing was optimized to cater for a targeted pre-turbine pressure and certain level of residual gases in the combustion chamber to avoid abnormal combustion events. Subsequently, a steady-state map of the potential of electric energy recuperation was performed while considering in parallel different efficiency maps of the potential generator and a certain wastegate actuation strategy. Moreover, the results were taken as input to a WLTP cycle simulation in order to identify any synergies with regard to fuel economy.
2017-03-28
Technical Paper
2017-01-0190
Neelakandan Kandasamy, Steve Whelan
Abstract The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature.
2017-03-28
Technical Paper
2017-01-0012
Zia Hossain, Shengling Deng, Jim Sellers, Gary Loechelt, Mo Grimaldi, Irene Wan, Emily Linehan, Alexander Young, Ali Salih
Abstract To meet the increasing demand for lower RDS(ON) MOSFETs in medium voltage automotive applications, the shielded gate trench MOSFET architecture is becoming increasingly popular in recent years for its ability to achieve both lower RDS(ON) and faster switching speed. The lower specific drain-to-source resistance (RDS(ON).Area) translates into smaller chip size and consequently cheaper die cost for the end customers. Furthermore, shielded gate trench architecture offers smaller gate-to-drain capacitance by utilizing the shielding effect from the shield-poly, leading to lower G-D charge (QGD), faster switching speed, and increased dv/dt immunity. A comprehensive portfolio of medium voltage shielded gate power MOSFET products in several voltage classes (40V, 60V, 80V, and 100V) in automotive and industrial markets is presented in this paper.
2017-03-28
Technical Paper
2017-01-1285
Tarun Mehra
Abstract Exploring and enhancement of biodiesel production from feedstock like non-edible vegetable oil is one of the powerful method to resolve inadequate amount of conventional raw materials and their high prices. The main aim of this study is to optimize the biodiesel production process parameters of a biodiesel obtained from non-edible feedstocks, namely Neem (Azadirachta indica) oil and Sesame (Sesamum indicum L.) oil, with response surface methodology using Doehlert’s experimental design. Based on the results, the optimum operating parameters for transesterification of the mixture A50S50 oil mixture at 51.045° C over a period of 45 minutes are as follows: methanol-to-oil ratio: 8.45, and catalyst concentration: 1.933 wt.%. These optimum operating parameters give the highest yield for the A50S50 biodiesel with a value of 95.24%.
2017-03-28
Technical Paper
2017-01-1232
Tsubasa Yamazakii, Hidekazu Uchiyama, Kazuaki Nakazawa, Tsubasa Isomura, Hisashi Ogata
Abstract Solar car races are held worldwide, aiming to promote vehicles that help reduce environmental loads on the roads. In order to gain superiority in solar car racing, it is essential to develop a high efficiency brushless direct drive motor that optimizes the energy use to the fullest and allows high speed driving when needed. To achieve these goals, two development approaches of solar car motors are proposed: the high efficiency motor which improves electrical characteristics and significantly reduces energy loss; and the variable field magnet motor that offers instant speed boost for a temporary period of time for overtaking opponents. We have developed a high efficiency motor through the application of an amorphous core and laminated magnets. Instead of the standard method of the W-EDM (Wire-Electric Discharge Machining) for amorphous cores, we utilized water jet cutting, through which we succeeded in achieving insulation between laminated cores.
2017-03-28
Journal Article
2017-01-0271
Robert Jane, Gordon G. Parker, Wayne Weaver, Ronald Matthews, Denise Rizzo, Michael Cook
Abstract This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
Abstract CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
2017-01-10
Technical Paper
2017-26-0109
Suresh Babu Muttana, Rakesh Kumar Dey, Arghya Sardar
Abstract Battery Electric vehicles produce zero local emissions and reduce dependency on fossil fuels. They open up possibility of efficient use of renewable energy in transport sector. India is endowed with high solar irradiance in most of the regions and seasons. Hence, tapping the solar energy for electrification of vehicles would be a sustainable solution in long run. Since significant amount of fossil fuels are consumed for public transportation, electrification of public transportation is a necessary step towards sustainability. However, range limitation is a serious constraint for electric buses. The technologies such as lightweight design of bus body and integration of solar panels on roof top of the bus can help in reducing the total energy consumption requirement.
2016-10-25
Technical Paper
2016-36-0437
Gustavo de Carvalho Bertoli, Geraldo José Adabo, Gefeson Mendes Pacheco
Abstract A method for conceptual design of Solar Powered Unmanned Aircraft System (UAS) is presented. This method is based on traditional design methodology - wing loading estimation for preliminary sizing - modified for Solar Powered UAS case. Based on past works on Solar Powered UAS design, proposes a method that considers payload power consumption and therefore its impact on battery sizing. This battery sizing composes vehicle conceptual sizing equation. This method is useful for an assessment of Solar Powered UAS use in specific missions and serving as a start point for a more detailed design. A user interface was developed to automate the design process based on this method proposed.
2016-10-17
Technical Paper
2016-01-2359
Khashayar Olia, Masood Shahverdi, Michael Mazzola, Abdelwahed Sherif
Although the cost-saving and good environmental impacts are the benefits that make Electric Vehicles (EVs) popular, these advantages are significantly influenced by the cost of battery replacement over the vehicle lifetime. After several charging and discharging cycles, the battery is subjected to energy and power degradation which affects the performance and efficiency of the vehicle. In addition to battery replacement cost, the electricity cost being paid by drivers is another key factor in selecting the EVs. An Energy Management System (EMS) with Model Predictive Control-based (MPC) algorithm is presented for a specific case of heavy-duty EV. Such EV draws its energy from the grid via catenary in addition to the on-board battery. Dynamic model of the vehicle will be defined by State Space Equations (SSE).
2016-10-17
Technical Paper
2016-01-2360
Rickard Arvidsson, Tomas McKelvey
Abstract Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
2016-10-17
Technical Paper
2016-01-2361
Ali Solouk, Mohammad Shakiba-herfeh, Kaushik Kannan, Hamit Solmaz, Paul Dice, Mehran Bidarvatan, Naga Nithin Teja Kondipati, Mahdi Shahbakhti
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. Extended range electric vehicles (EREVs), by decoupling the engine from the drivetrain, allows the engine to operate in a limited operating range; thus, EREVs offer an ideal platform for realizing the advantages of LTC engines. In this study, the global optimum fuel economy improvement of an experimentally developed 2-liter multi-mode LTC engine in a series EREV is investigated. The engine operation modes include Homogeneous-Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI).
2016-10-17
Journal Article
2016-01-2358
Nobunori Okui
In order to improve the fuel economy of the heavy duty trucks at a highway driving condition, the heavy duty hybrid trucks with new type of hybrid electric assist engine system were proposed at the previous report. The new system consists of a downsizing diesel engine with a two-stage charging structure, which has an electric supercharger with bypass circuit and a conventional turbocharger, the hybrid electric motor and the small-capacity battery. The electric power consumption of an electric supercharger is equivalent to the amount of the regeneration power produced during high-speed driving where the opportunity of the regeneration is small. In this report, an electric supercharger for the heavy duty hybrid truck was produced experimentally. First, the engine performance and exhaust emissions were investigated using the 4 cylinder diesel engine equipped with an electric supercharger.
2016-09-20
Technical Paper
2016-01-1991
Syed J. Khalid
Abstract Aircraft subsystems essential for flight safety and airworthiness, including flight controls, environmental control system (ECS), anti-icing, electricity generation, and starting, require engine bleed and power extraction. Predictions of the resulting impacts on maximum altitude net thrust(>8%), range, and fuel burn, and quantification of turbofan performance sensitivities with compressor bleed, and with both high pressure(HP) rotor power extraction and low pressure(LP) rotor power extraction were obtained from simulation. These sensitivities indicated the judicious extraction options which would result in the least impact. The “No Bleed” system in Boeing 787 was a major step forward toward More Electric Aircraft (MEA) and analysis in this paper substantiates the claimed benefits.
2016-09-20
Technical Paper
2016-01-1985
Fei Gao, Serhiy Bozhko, Patrick Wheeler
Abstract The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
2016-09-20
Technical Paper
2016-01-1989
Qiong Wang, Rolando Burgos, Xuning Zhang, Dushan Boroyevich, Adam White, Mustansir Kheraluwala
Abstract In modern aircraft power systems, active power converters are promising replacements for transformer rectifier units concerning efficiency and weight. To assess the benefits of active power converters, converter design and optimization should be carefully done under the operation requirements of aircraft applications: electromagnetic interference (EMI) standards, power quality standards, etc. Moreover, certain applications may have strict limits on other converter specifications: weight, size, converter loss, etc. This paper presents the methodology for performance optimization of different active power converters (active front-ends, isolated DC/DC converters and three-phase isolated converters) for aircraft applications. Key methods for power converter component (e.g. inductors, semiconductor devices, etc.) performance optimization and loss calculation are introduced along with the converter optimization procedure.
2016-09-20
Journal Article
2016-01-1988
Rodney Yeu, Jason Wells, Chad Miller, Jane Thompson
Abstract Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
2016-09-20
Journal Article
2016-01-1987
Mingming Yin, Serhiy Bozhko, Seang Shen Yeoh
Abstract The future aircraft electrical power system is expected to be more efficient, safer, simpler in servicing and easier in maintenance. As a result, many existing hydraulic and pneumatic power driven systems are being replaced by their electrical counterparts. This trend is known as a move towards the More-Electric Aircraft (MEA). As a result, a large number of new electrical loads have been introduced in order to power many primary functions including actuation, de-icing, cabin air-conditioning, and engine start. Therefore electric power generation systems have a key role in supporting this technological trend. Advances in modern power electronics allow the concept of starter/generator (S/G) which enables electrical engine start and power generation using the same electrical machine. This results in substantial improvements in power density and reduced overall weight.
2016-09-20
Technical Paper
2016-01-1986
Qian Li, Balakrishnan Devarajan, Xuning Zhang, Rolando Burgos, Dushan Boroyevich, Pradeep Raj
Abstract The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged.
2016-09-20
Technical Paper
2016-01-2034
Tobias Kreitz, Frank Thielecke
Abstract The aviation industry is facing major challenges due to increased environmental requirements that are driven by economic constraints. For this reason, guidelines like "Flightpath 2050", the official guide of European aviation, call for significant reductions in pollutant emissions. The concept of the More Electric Aircraft offers promising perspectives to meet these demands. A key-enabler for this concept is the integration of new technologies on board of the next generation of civil transportation aircraft. Examples are electro-mechanical actuators for primary and secondary flight controls or the fuel cell technology as innovative electrical energy supply system. Due to the high complexity and interdisciplinarity, the development of such systems is an equally challenging and time-consuming process.
2016-09-20
Journal Article
2016-01-2042
Chad N. Miller, Michael Boyd
Abstract This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
2016-09-20
Journal Article
2016-01-2053
Orlando Ferrante, Eelco Scholte, Claudio Pinello, Alberto Ferrari, Leonardo Mangeruca, Cong Liu, Christos Sofronis
Abstract Formal Methods, and in particular Model Checking, are seeing an increasing use in the Aerospace domain. In recent years, Formal Methods are now commonly used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. At the system level, Model Checking has seen more limited uses due to the complexity and abstractions needed. In this paper we propose several methods to increase the capability of applying Model Checking to complex Aerospace Systems. An aircraft electrical power system is used to highlight the methodology. Automated model-based methods such as Cone of Influence and Timer Abstractions are described.
2016-09-20
Technical Paper
2016-01-2015
Rory Telford, Catherine Jones, Patrick Norman, Graeme Burt
Abstract Mass and efficiency are key performance indicators for the development and design of future electric power systems (EPS) for more-electric aircraft (MEA). However, to enable consideration of high-level EPS architecture design trades, there is a requirement for modelling and simulation based analysis to support this activity. The predominant focus to date has been towards the more detailed aspects of analysis, however there is also a significant requirement to be able to perform rapid high-level trades of candidate architectures and technologies. Such a capability facilitates a better appreciation of the conflicting desires to maximize availability and efficiency in candidate MEA architectures, whilst minimizing the overall system mass. It also provides a highly valuable and quantitative assessment of the systemic impact of new enabling technologies being considered for MEA applications.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Technical Paper
2016-01-2031
Michal Sztykiel, Steven Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract There is a well-recognised need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, a large number of technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modeling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architecture models.
2016-04-05
Technical Paper
2016-01-0246
Rupesh Sonu Kakade, Prashant Mer
Abstract Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
2016-04-05
Technical Paper
2016-01-0351
Yuki Kudo, Akinori Sato, Kazutaka Kimura, Shoichi Iwamoto, Hiroyuki Ohba, Motoya Sakabe, Yasuhiro Shirai
Abstract Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
2016-04-05
Journal Article
2016-01-1165
Mahmoud Abdelhamid, Imtiaz Haque, Srikanth Pilla, Zoran S. Filipi, Rajendra Singh
Abstract The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has led to major developments in the transportation sector, among which is the attempt to utilize clean energy sources. To date, use of solar energy as an auxiliary source of on-board fuel has not been extensively investigated. This paper is the first study at undertaking a comprehensive analysis of using solar energy on-board by means of photovoltaic (PV) technologies to enhance automotive fuel economies, extend driving ranges, reduce greenhouse gas (GHG) emissions, and ensure better economic value of internal combustion engine (ICE) -based vehicles to meet CAFE standards though 2025. This paper details and compares various aspects of hybrid solar electric vehicles with conventional ICE vehicles.
2016-04-05
Technical Paper
2016-01-1289
Francis Assadian, Kevin R. Mallon, Bo Fu
Abstract Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the high-capacity batteries needed to power these vehicles are both cost and weight prohibitive. One possible method of supplementing battery power is to mount flexible solar panel modules to the roof of these vehicles, thereby allowing for a smaller battery (reducing battery cost and weight) or extended vehicle range. Electric buses identified as the type of vehicle that would derive the most benefit from roof-mounted solar panels due to their low operating speed (including frequent idling) and large available surface area. In this paper, the performance of an electric bus with combined battery and photovoltaic power sources is simulated on the Orange County Bus Cycle for average weather in Davis, CA.
2016-04-05
Technical Paper
2016-01-1286
Takuya Hara, Takahiro Shiga, Kazutaka Kimura, Akinori Sato
Abstract Introducing effective technologies to reduce carbon emissions in the transport sector is a critical issue for automotive manufacturers to contribute to sustainable development. Unlike the plug-in electric vehicles (PEVs), whose effectiveness is dependent on the carbon intensity of grid electricity, the solar hybrid vehicle (SHV) can be an alternative electric vehicle because of its off-grid, zero-emission electric technology. Its usability is also advantageous because it does not require manual charging by the users. This study aims at evaluating the economic, environmental, and usability benefits of SHV by comparing it with other types of vehicles including PEVs. By setting cost and energy efficiency on the basis of the assumed technology level in 2030, annual cost and annual CO2 emissions of each vehicle are calculated using the daily mileage pattern obtained from a user survey of 5,000 people in Japan and the daily radiation data for each corresponding user.
Viewing 1 to 30 of 496