Criteria

Text:
Display:

Results

Viewing 1 to 30 of 507
2017-10-08
Technical Paper
2017-01-2221
Peixuan Zeng, Penghao Zhang, Binyu Mei, Shiping Huang, Gangfeng Tan
Abstract:In low temperature condition, the increase of fuel viscosity, the decrease of flow-ability of lubricating oil and the decrease of storage battery performance cause the engine starting difficult. The current electrical heating method can improve the engine starting performance in low temperature condition, but it causes a negative influence on storage battery performance and exhaust emission. In this paper, a warming device uses solar energy to directly warm up the engine. The device transfers solar power into thermal energy and store it into heat reservoir and uses heat conductor to warm up the engine. By using solar power to save power, the lifespan of the engine is extended and exhaust emission is decreased. This paper find out the heat amount necessary for diesel engine through resource gathering and calculation, choose an appropriate device and design a corresponding solar warming system. Keywords: warming system, solar power, diesel engine
2017-09-23
Journal Article
2017-01-1983
Bing Zhu, Shude Yan, Jian Zhao, Weiwen Deng, Ning Bian
Abstract Electric power steering (EPS) system is a kind of dynamic control system for vehicle steering, which can amplify the driver steering torque inputs to the vehicle to improve steering comfortable and performance, but the present EPS can’t cater to the driving habits of different people. In this paper, a personalized EPS controller is designed based on the driver behavior, which combines real-time driver behavior identification strategy with personalized assistance characteristic. Firstly, the driver behavior data acquisition system is designed and established, based on which, the input data of different kinds of drivers along with vehicle signals are collected under typical working conditions, then the identification of driver behavior online is realized using the BP neural network.
2017-09-19
Technical Paper
2017-01-2037
Daniel Schlabe, Dirk Zimmer, Alexander Pollok
The thermal inertia of aircraft cabins and galleys is significant for commercial aircraft. The aircraft cabin is controlled by the Environment Control System (ECS) to reach, among other targets, a prescribed temperature. Allowing a temperature band of e.g. 2 K around the prescribed temperature, it is possible to use the cabin dynamics as an energy storage. This storage can then be used to reduce electrical peak power, increase efficiency of ECS, reduce thermal cooling peak power, or reduce engine offtake if it is costly or not sufficiently available. In the same way, also the aircraft galleys can be exploited. Since ECS and galleys are among the largest consumers of electrical power or bleed air, there is a large potential on improving energy efficiency or reducing system mass to reduce fuel consumption of aircraft. This paper investigates different exploitation strategies of cabin and galley dynamics using modelling and simulation.
2017-09-19
Technical Paper
2017-01-2034
Bailey Hall, Benjamin Palmer, Tyler Milburn, Luis Herrera, Bang Tsao, Joseph Weimer
Abstract Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
2017-09-19
Technical Paper
2017-01-2033
Minh-khoa. Lam, Christopher Buterhaugh, Luis Herrera, Bang Tsao
Abstract The amount of electrical power required for future aircraft is increasing significantly. In this paper, a comprehensive model of a drive shaft with multiple degrees of freedom was developed and integrated to detailed engine and electrical network models to study the impact of higher electrical loads. The overall system model is composed of the engine, shafts, gearbox, and the electric network. The Dynamic Dual Spool High Bypass JT9D engine was chosen for this study. The engine was modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. In the electrical side, one generator was connected to the Low Pressure (LP) shaft and the other to the High Pressure (HP) shaft. A modified model of the shafts between the engine and the accessory gearbox was created.
2017-09-19
Technical Paper
2017-01-2035
Eric C. Bauer, Nima Niassati, John Brothers, John Troth, Jeff Hensal, Jin Wang, Daniel Schweickart, Dennis Grosjean
Abstract As applications in aerospace, transportation and data centers are faced with increased electric power consumption, their dc operating voltages have increased to reduce cable weight and to improve efficiency. Electric arcs in these systems still cause dangerous fault conditions and have garnered more attention in recent years. Arcs can be classified as either low impedance or high impedance arcs and both can cause insulation damage and fires. Low impedance arcs release lots of energy when high voltage becomes nearly shorted to ground. High impedance arcs can occur when two current-carrying electrodes are separated, either by vibration of a loose connection or by cables snapping. The high impedance arc decreases load current due to a higher equivalent load impedance seen by the source. This complicates the differentiation of a high impedance arc fault from normal operation.
2017-09-19
Technical Paper
2017-01-2026
Narayanan Komerath, Shravan Hariharan, Dhwanil Shukla, Sahaj Patel, Vishnu Rajendran, Emily Hale
Our concept studies have indicated that a set of reflectors floated at high altitudes and supported by aerodynamic lift, can reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of global warming, is well within the financial abilities of the world. This paper describes one of the concepts for such reflectors. The basic element of a reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled fixed flying wing aircraft. The altitude rises above 30,480 meters (100,000 feet) in the daytime and does not sink below 28,288 meters (60,000 feet or Flight Level FL60) at night. While the reflector sheet easily supports its own weight with very small lift coefficient, the skin friction and induced drag components are large.
2017-09-19
Technical Paper
2017-01-2028
Steven Nolan, Patrick Norman, Graeme Burt, Catherine Jones
Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, much larger aircraft are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is the possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
2017-09-19
Technical Paper
2017-01-2031
Nisha Kondrath, Dalvir Saini, Nathaniel Smith
In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and needs for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A novel hybrid SiC-GaN based full-bridge dc-dc buck converter with improved efficiency for high power applications will be presented in this paper. With the current device manufacturing technology, GaN devices can only handle breakdown voltages up to 650 V, while SiC devices can handle up to 1200 V. GaN devices exhibit remarkable switching performance compared to SiC devices.
2017-09-19
Technical Paper
2017-01-2032
Nisha Kondrath
Efficient, small, and reliable dc-dc power converters with high power density are highly desirable in applications such as aerospace and electric vehicles, where battery storage is limited. Bidirectional full-bridge (FB) dc-dc converters are very popular in medium and high-power applications requiring regenerative capabilities. Full-bridge topology has several advantages such as: • Inherent galvanic isolation between input and output and high conversion ratio due to the transformer with a turns ratio n. • Reduction in passive component sizes due to the increase in inductor current frequency to twice the switching frequency. • Reduced voltage stresses on the low-voltage side switches and current stresses on the high-voltage side switches. However, due to the high number of switches, device losses increase.
2017-09-19
Journal Article
2017-01-2036
William Schley
Abstract Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
2017-09-04
Technical Paper
2017-24-0162
Harald Stoffels, Jens Dunstheimer, Christian Hofmann
Abstract The application of a turbocharger, having an electric motor/generator on the rotor was studied focusing on the electric energy recuperation on a downsized gasoline internal combustion engine (turbocharged, direct injection) using 1D-calculation approaches. Using state-of-the art optimization techniques, the settings of the valve timing was optimized to cater for a targeted pre-turbine pressure and certain level of residual gases in the combustion chamber to avoid abnormal combustion events. Subsequently, a steady-state map of the potential of electric energy recuperation was performed while considering in parallel different efficiency maps of the potential generator and a certain waste-gate actuation strategy. Moreover, the results were taken as input to a WLTP cycle simulation in order to identify any synergies with regard to fuel economy.
2017-03-28
Technical Paper
2017-01-1232
Tsubasa Yamazakii, Hidekazu Uchiyama, Kazuaki Nakazawa, Tsubasa Isomura, Hisashi Ogata
Abstract Solar car races are held worldwide, aiming to promote vehicles that help reduce environmental loads on the roads. In order to gain superiority in solar car racing, it is essential to develop a high efficiency brushless direct drive motor that optimizes the energy use to the fullest and allows high speed driving when needed. To achieve these goals, two development approaches of solar car motors are proposed: the high efficiency motor which improves electrical characteristics and significantly reduces energy loss; and the variable field magnet motor that offers instant speed boost for a temporary period of time for overtaking opponents. We have developed a high efficiency motor through the application of an amorphous core and laminated magnets. Instead of the standard method of the W-EDM (Wire-Electric Discharge Machining) for amorphous cores, we utilized water jet cutting, through which we succeeded in achieving insulation between laminated cores.
2017-03-28
Technical Paper
2017-01-1285
Tarun Mehra
Abstract Exploring and enhancement of biodiesel production from feedstock like non-edible vegetable oil is one of the powerful method to resolve inadequate amount of conventional raw materials and their high prices. The main aim of this study is to optimize the biodiesel production process parameters of a biodiesel obtained from non-edible feedstocks, namely Neem (Azadirachta indica) oil and Sesame (Sesamum indicum L.) oil, with response surface methodology using Doehlert’s experimental design. Based on the results, the optimum operating parameters for transesterification of the mixture A50S50 oil mixture at 51.045° C over a period of 45 minutes are as follows: methanol-to-oil ratio: 8.45, and catalyst concentration: 1.933 wt.%. These optimum operating parameters give the highest yield for the A50S50 biodiesel with a value of 95.24%.
2017-03-28
Technical Paper
2017-01-0012
Zia Hossain, Shengling Deng, Jim Sellers, Gary Loechelt, Mo Grimaldi, Irene Wan, Emily Linehan, Alexander Young, Ali Salih
Abstract To meet the increasing demand for lower RDS(ON) MOSFETs in medium voltage automotive applications, the shielded gate trench MOSFET architecture is becoming increasingly popular in recent years for its ability to achieve both lower RDS(ON) and faster switching speed. The lower specific drain-to-source resistance (RDS(ON).Area) translates into smaller chip size and consequently cheaper die cost for the end customers. Furthermore, shielded gate trench architecture offers smaller gate-to-drain capacitance by utilizing the shielding effect from the shield-poly, leading to lower G-D charge (QGD), faster switching speed, and increased dv/dt immunity. A comprehensive portfolio of medium voltage shielded gate power MOSFET products in several voltage classes (40V, 60V, 80V, and 100V) in automotive and industrial markets is presented in this paper.
2017-03-28
Technical Paper
2017-01-0190
Neelakandan Kandasamy, Steve Whelan
Abstract The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature.
2017-03-28
Journal Article
2017-01-0271
Robert Jane, Gordon G. Parker, Wayne Weaver, Ronald Matthews, Denise Rizzo, Michael Cook
Abstract This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
Abstract CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
2017-01-10
Technical Paper
2017-26-0109
Suresh Babu Muttana, Rakesh Kumar Dey, Arghya Sardar
Abstract Battery Electric vehicles produce zero local emissions and reduce dependency on fossil fuels. They open up possibility of efficient use of renewable energy in transport sector. India is endowed with high solar irradiance in most of the regions and seasons. Hence, tapping the solar energy for electrification of vehicles would be a sustainable solution in long run. Since significant amount of fossil fuels are consumed for public transportation, electrification of public transportation is a necessary step towards sustainability. However, range limitation is a serious constraint for electric buses. The technologies such as lightweight design of bus body and integration of solar panels on roof top of the bus can help in reducing the total energy consumption requirement.
2016-10-25
Technical Paper
2016-36-0437
Gustavo de Carvalho Bertoli, Geraldo José Adabo, Gefeson Mendes Pacheco
Abstract A method for conceptual design of Solar Powered Unmanned Aircraft System (UAS) is presented. This method is based on traditional design methodology - wing loading estimation for preliminary sizing - modified for Solar Powered UAS case. Based on past works on Solar Powered UAS design, proposes a method that considers payload power consumption and therefore its impact on battery sizing. This battery sizing composes vehicle conceptual sizing equation. This method is useful for an assessment of Solar Powered UAS use in specific missions and serving as a start point for a more detailed design. A user interface was developed to automate the design process based on this method proposed.
2016-10-17
Technical Paper
2016-01-2359
Khashayar Olia, Masood Shahverdi, Michael Mazzola, Abdelwahed Sherif
Although the cost-saving and good environmental impacts are the benefits that make Electric Vehicles (EVs) popular, these advantages are significantly influenced by the cost of battery replacement over the vehicle lifetime. After several charging and discharging cycles, the battery is subjected to energy and power degradation which affects the performance and efficiency of the vehicle. In addition to battery replacement cost, the electricity cost being paid by drivers is another key factor in selecting the EVs. An Energy Management System (EMS) with Model Predictive Control-based (MPC) algorithm is presented for a specific case of heavy-duty EV. Such EV draws its energy from the grid via catenary in addition to the on-board battery. Dynamic model of the vehicle will be defined by State Space Equations (SSE).
2016-10-17
Technical Paper
2016-01-2361
Ali Solouk, Mohammad Shakiba-herfeh, Kaushik Kannan, Hamit Solmaz, Paul Dice, Mehran Bidarvatan, Naga Nithin Teja Kondipati, Mahdi Shahbakhti
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. Extended range electric vehicles (EREVs), by decoupling the engine from the drivetrain, allows the engine to operate in a limited operating range; thus, EREVs offer an ideal platform for realizing the advantages of LTC engines. In this study, the global optimum fuel economy improvement of an experimentally developed 2-liter multi-mode LTC engine in a series EREV is investigated. The engine operation modes include Homogeneous-Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI).
2016-10-17
Technical Paper
2016-01-2360
Rickard Arvidsson, Tomas McKelvey
Abstract Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
2016-10-17
Journal Article
2016-01-2358
Nobunori Okui
In order to improve the fuel economy of the heavy duty trucks at a highway driving condition, the heavy duty hybrid trucks with new type of hybrid electric assist engine system were proposed at the previous report. The new system consists of a downsizing diesel engine with a two-stage charging structure, which has an electric supercharger with bypass circuit and a conventional turbocharger, the hybrid electric motor and the small-capacity battery. The electric power consumption of an electric supercharger is equivalent to the amount of the regeneration power produced during high-speed driving where the opportunity of the regeneration is small. In this report, an electric supercharger for the heavy duty hybrid truck was produced experimentally. First, the engine performance and exhaust emissions were investigated using the 4 cylinder diesel engine equipped with an electric supercharger.
2016-09-20
Technical Paper
2016-01-2034
Tobias Kreitz, Frank Thielecke
Abstract The aviation industry is facing major challenges due to increased environmental requirements that are driven by economic constraints. For this reason, guidelines like "Flightpath 2050", the official guide of European aviation, call for significant reductions in pollutant emissions. The concept of the More Electric Aircraft offers promising perspectives to meet these demands. A key-enabler for this concept is the integration of new technologies on board of the next generation of civil transportation aircraft. Examples are electro-mechanical actuators for primary and secondary flight controls or the fuel cell technology as innovative electrical energy supply system. Due to the high complexity and interdisciplinarity, the development of such systems is an equally challenging and time-consuming process.
2016-09-20
Technical Paper
2016-01-2031
Michal Sztykiel, Steven Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract There is a well-recognised need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, a large number of technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modeling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architecture models.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Technical Paper
2016-01-1989
Qiong Wang, Rolando Burgos, Xuning Zhang, Dushan Boroyevich, Adam White, Mustansir Kheraluwala
Abstract In modern aircraft power systems, active power converters are promising replacements for transformer rectifier units concerning efficiency and weight. To assess the benefits of active power converters, converter design and optimization should be carefully done under the operation requirements of aircraft applications: electromagnetic interference (EMI) standards, power quality standards, etc. Moreover, certain applications may have strict limits on other converter specifications: weight, size, converter loss, etc. This paper presents the methodology for performance optimization of different active power converters (active front-ends, isolated DC/DC converters and three-phase isolated converters) for aircraft applications. Key methods for power converter component (e.g. inductors, semiconductor devices, etc.) performance optimization and loss calculation are introduced along with the converter optimization procedure.
2016-09-20
Technical Paper
2016-01-1985
Fei Gao, Serhiy Bozhko, Patrick Wheeler
Abstract The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
2016-09-20
Technical Paper
2016-01-1986
Qian Li, Balakrishnan Devarajan, Xuning Zhang, Rolando Burgos, Dushan Boroyevich, Pradeep Raj
Abstract The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged.
Viewing 1 to 30 of 507