Display:

Results

Viewing 241 to 270 of 8727
2014-04-01
Collection
This technical paper collection covers intake/exhaust/powertrain and chassis noise and vibration.
2014-04-01
Technical Paper
2014-01-1293
Gen Shibata, Hirooki Ushijima, Hideyuki Ogawa, Yushi Shibaike
Abstract When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise.
2014-04-01
Technical Paper
2014-01-0822
Jong Ho Lee
Abstract Since vehicle NVH reduction technology has improved dramatically, buzz, squeak and rattle (hereafter referred to as “BSR”) noise quantification from interior and exterior of the vehicle becomes an important factor to measure the quality of the vehicle. (The cost rate of BSR noise claims take around 10-15%, moreover BSR noise negatively affects customers to purchase vehicles.) Therefore, a research of BSR evaluation comes to the fore to make a premium car. In this paper, we would like to introduce the development of a vehicle excitation test mode, the full-vehicle BSR test system, and a sound acoustic camera to detect BSR noise. The test profiles were correlated with various road severities such as the domestic field test sites including 5,000km cross-country off road, 19 test tracks for BSR in R&D test center, and quality test tracks in domestic factories. These test modes were classified into 4 levels (Low-Normal-High-Crazy) by judging degrees of GRMS values.
2014-04-01
Technical Paper
2014-01-0896
Li Yan, Weikang Jiang, Zongbin Huang
Abstract Sound quality of vehicle interior noise affects passenger comfort. In order to improve the sound quality of a micro commercial vehicle, the vehicle interior noise under different conditions such as idle, constant speeds and accelerating is recorded by using artificial head with dual microphones. The sound quality of recorded noise is evaluated in both objective and subjective ways. Physical parameters of interior noise are calculated objectively, and annoyance score is analyzed subjectively using paired-comparison method. According to the regression analyzing of the annoyance score and the physical parameters, an objective evaluation parameter of the sound quality is employed. To analyze the vehicle body panel contribution to interior noise sound quality, the location and spectrum characteristics of major panel emission noise sources are identified based on partial singular valued decomposition (PSVD) method.
2014-04-01
Technical Paper
2014-01-0592
Fred G. Mendonca, Terence Connelly, Satish Bonthu, Philip Shorter
Abstract The interior noise in a vehicle that is due to flow over the exterior of the vehicle is often referred to as ‘windnoise’. In order to predict interior windnoise it is necessary to characterize the fluctuating surface pressures on the exterior of the vehicle along with vibro-acoustic transmission to the vehicle interior. For example, for greenhouse sources, flow over the A-pillar and side-view mirror typically induces both turbulence and local aeroacoustic sources which then excite the glass, and window seals. These components then transmit noise and vibration to the vehicle interior. Previous studies by the authors have demonstrated validated CFD (Computational Fluid Dynamics) techniques which give insight into the flow-noise source mechanisms. The studies also made use of post-processing based on temporal and spatial Fourier analysis in order to quantify the amount of energy in the flow at convective and acoustic wavenumbers.
2014-04-01
Technical Paper
2014-01-0631
Kenji Yoshida, Junichi Semura, Itsuhei Kohri, Yoshihiro Kato
Abstract This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
2014-04-01
Technical Paper
2014-01-0003
Manchi Venkateswara Rao, Jos Frank, Prasath Raghavendran
Abstract Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
2014-04-01
Technical Paper
2014-01-0005
Atul Devidas Pol, Praveen Naganoor
Abstract Achieving targeted global modes (torsion, vertical bending and lateral bending) is one of the main enablers in meeting desired NVH performance characteristics of a new vehicle program. The torsion mode of next generation Land Rover - Freelander was lagging behind its target while the development cycle was quite progressed beyond underbody freeze. There was a challenge to recover more than 8 Hz in BIW torsion mode. A combination of Nastran Sol 200 (design sensitivity and optimization) and iterative process was adopted to demonstrate how the mode could be recovered with optimum mass penalty to the program. The paper states the existing modal status when this work was taken up. Next it elucidates design sensitivity/optimization module outcome which identifies sensitive areas to improve torsion mode.
2014-04-01
Technical Paper
2014-01-0013
Ravi Kiran Cheni, Chetan Prakash Jain, Revathy Muthiah, Srikanth Gomatam
Abstract Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
2014-04-01
Technical Paper
2014-01-0011
Xiaozhen Sheng, Shouhui Huang, Sheng Tian, Xia Cao, Youlin Huang
Abstract Subject to excitations from pressure pulsations in boost air, the rubber pipe connecting the turbo compressor outlet and the intercooler of an engine vibrates structurally and radiates noise. If the pipe is improperly selected, the resulted vibration may be strong enough to radiate noise which is sufficient to damage the sound quality of the vehicle. This paper presents an initial analysis on this issue. First, formulae are derived for predicting vibration and sound radiation of the pipe for a given pressure pulsation, resulting in sound transmission index for the pipe to quantify its sound insulation behavior. Then effects on the sound transmission index are investigated for pipe parameters such as pipe wall thickness, Young's modulus and density of pipe material.
2014-04-01
Technical Paper
2014-01-0015
Mohit Kohli, S Nataraja Moorthy, Manchi Venkateswara Rao, Prasath Raghavendran
Abstract The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators.
2014-04-01
Technical Paper
2014-01-0019
Vijay Antony John Britto, Kalyankumar Sidram Hatti, Sai Sankaranarayana, Sivasankaran Sadasivam, Ekambaram Loganathan
Abstract Commercial vehicle NVH attributes primarily focus on interior noise for driver's comfort and exterior noise for environmental legislation. Major sources for both the interior and exterior noise are power train unit, exhaust and air intake system. This paper focuses on development of Air Intake System (AIS) for better interior and exterior NVH performance for medium and heavy commercial vehicles. For air intake system, structural radiations from its panels and nozzle noise are significant contributors on overall vehicle NVH. Noise generation mechanism in air intake system occurs due to opening and closing of the valves and inlet air column oscillation by sharp pressure pulse from cylinder. Based on benchmarking, vehicle level targets have been arrived, and then cascaded to system and sub-system level targets. For air intake system, targets for nozzle noise at wide open throttle condition have been set for exterior NVH performance.
2014-04-01
Technical Paper
2014-01-0044
Tomoya Ishii, Tomohiro Sudo, Masanori Morikawa, Daisuke Nagahata
Abstract General analysis methods which are known as Transfer Path Analysis and Air borne Source Quantification have been extended to estimate forces of an air conditioner's parts and also clarify the path from air conditioner system. These results show noise transfer path to be improved. Originally, the existing methods are known to require considerable amount of time for the cause of complicated measurement to get analysis results. In the work of this paper, required measurement is simplified, and time reduction of 50% is achieved without critical decrease in analysis accuracy.
2014-04-01
Technical Paper
2014-01-0038
Jin-Seok Hong, Hyung-Seok Kook, Kang-Duck Ih, Hyoung-Gun Kim
Abstract Fluctuation in the sound pressure level of the interior noise of an on-road vehicle is always caused by unpredictable factors such as wind gusts, traffic, roadside obstacles, and changing drive-by-drive conditions, and is hence, not reproducible in nature. Since the human brain is known to be more sensitive to noise that is amplitude-modulated than noise at a steady level [1], it is important to evaluate and improve the NVH performance of a vehicle in terms of the fluctuating interior noise likely to be experienced by drivers or users. To this end, an evaluation system was developed as part of this study, the details of which are presented in this paper. The system is composed of hardware for database storage and replay of sounds, and software for synthesizing the noise signals. For given wind tunnel test results, the evaluation system yields a wind noise model that can synthesize wind noise signals for any wind scenario.
2014-04-01
Technical Paper
2014-01-0619
L.A.Raghu Mutnuri, Sivapalan Senthooran, Robert Powell, Zen Sugiyama, David Freed
Abstract A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past.
2014-04-01
Technical Paper
2014-01-1269
Julie Blumreiter, Chris Edwards
Abstract There is significant motivation to extend the operating range of naturally aspirated HCCI combustion to high load (8-12 bar IMEP) to attain a combustion strategy with the efficiency benefits of HCCI but without the lost power density of a lean or highly diluted charge. Currently, the high-load limit of HCCI combustion is imposed by a phenomenon commonly known as ringing. Ringing results when the kinetically-driven autoignited combustion process proceeds in such a way as to form strong pressure waves which reverberate in the engine. Inhomogeneities and gradients in mixture reactivity lead certain regions to react ahead of others, and as a result, coupling can occur between a pressure wave and the reaction front. This paper seeks first to sort several related but distinct issues that impose the high load limit: ringing, engine damage, peak in-cylinder pressure, peak rate of pressure rise, and engine noise.
2014-04-01
Journal Article
2014-01-1675
Joe Serrano, Geoff Routledge, Norman Lo, Mark Shost, Vijay Srinivasan, Biswa Ghosh
Cylinder deactivation is a technology seeing increased automotive deployment in light of more demanding fuel economy and emissions requirements. Examples of current production systems include GM's Active Fuel Management and Chrysler's Multi-Displacement System, both of which provide one fixed level of deactivation. Dynamic Skip Fire (DSF), in which the number of fired cylinders is continuously varied to match the torque demand, offers significantly increased fuel savings over a wider operating range than the current production systems. One of the biggest challenges in implementing cylinder deactivation is developing strategies to provide acceptable Noise, Vibration and Harshness (NVH); this paper discusses those challenges and the methodologies developed. This work covers theoretical root causes; proposed metrics to quantify the NVH level; algorithmic and physical mitigation methods; and both subjective and objective evaluation results.
2014-04-01
Technical Paper
2014-01-1681
Manivasagam Shanmugam, Raghavendra Kharatmal, Shirish Satpute
Abstract This paper describes the rapid design and development of thin walled powertrain components which act as external cover for engine subsystem assemblies. Computer Aided Engineering plays a major role in reducing the overall product development lead time. An approach by using ‘Simulation Driven Design and Development’ helps the developers to bring the necessary confidence about the components' required functionality during the design stage itself. During the design stage, typical inputs available for the development of these components are the broad dimensions obtained from the packaging considerations. The designer is required to develop the concepts targeting least noise radiation from component surfaces due to various excitations. Based on cost considerations, the designer can even opt for plastic materials instead of steel. The current paper considers two major noise radiation members namely valve cover and timing gear cover for rapid product development.
2014-04-01
Technical Paper
2014-01-1679
S. Christopher Zugo, Craig D. Smith, Charles W. Braun, Joseph Kazour
Abstract The audible noise characteristics of direct injectors are important to OEM customers when selecting a high pressure gasoline fuel injector. The activation noise is an undesirable aspect that needs to be minimized through injector design, injector mounting, and acoustic treatments. Experimentally identifying the location and frequency of noise sources is beneficial to the improvement of injector designs. Acoustic holography is a useful tool in locating these noise sources by measuring a sound pressure field with multiple microphones and using this field to estimate the source location. For injector testing, the local boundary conditions of the noise source will affect the resultant sound field. Therefore, how the injector is mounted within the test fixture will change the resultant noise field measured. In this study, the process of qualifying an acoustic holography fixture using measurement system analysis for GDi fuel injector testing will be documented.
2014-04-01
Journal Article
2014-01-1683
Hiroki Yamaura, Masao Ishihama, Kazuhide Togai
Engine torque profile shaping strategies have been proposed to reduce noise & vibration for passenger cars. However, it has not been sufficiently studied that feasible torque profile for vibration suppression is dependent on engine speed and target torque shape. On the other hand, combustion pressure profile shaping strategies have been proposed to reduce noise. However, there is almost no research of the quantitative evaluation of contribution of combustion pressure profile. First, the torque profile shaping was studied. Pre-compensated torque and 2-step torque were selected as typical target torque profiles. An effectiveness of vibration suppression by two torque profiles was evaluated by both drivetrain vibration model and engine torque profile model which have been established well. As a result of studying the torque profile shaping, timing of torque rise by the 2-step torque generation is delayed or advanced.
2014-04-01
Technical Paper
2014-01-1043
Kwang-Ho Oh, Won Hee Han, Jun-Ho Jang, Yong-Choo Tho, Hak Hyun Kim
Abstract Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
2014-04-01
Technical Paper
2014-01-0032
Sung Young Shin, Sang Dong Lee, Bong Chul Go
Abstract In terms of the responsive quality of cars, reducing the vibration of car seats is very important, as this vibration is transmitted directly to the driver. Here, a sensitivity analysis method was used to reasonably reduce the vibration of car seats at minimal cost. A laboratory test was conducted under two excitation conditions: first, vibration in idle state; second, random vibration not exceeding 100 Hz. To determine the reliability of the laboratory test, the actual vibration in idle state was simulated in a multi-axial simulation table for the idle excitation environment of cars that are sensitive to even the smallest changes in the environment. The frequencies of interest were selected by adding the sums of frequency response functions measured at the 24 nodal points of interest under the two excitation conditions.
2014-04-01
Technical Paper
2014-01-0024
Todd Tousignant, Kiran Govindswamy
Abstract Increased customer expectation for NVH refinement creates a significant challenge for the integration of Diesel powertrains into passenger vehicles that might have been initially developed for gasoline engine applications. A significant factor in the refinement of Diesel powertrain sound quality is calibration optimization for NVH, which is often constrained by performance, emissions and fuel economy requirements. Vehicle level enablers add cost and weight to the vehicle and are generally bounded by vehicle architecture, particularly when dealing with a carry-over vehicle platform, as is often the case for many vehicle programs. These constraints are compounded by the need to make program critical sound package content decisions well before the availability of prototype vehicles with the right powertrain. In this paper, a case study on NVH development for integration of a light duty Diesel powertrain is presented.
2014-04-01
Technical Paper
2014-01-0030
Kun Diao, Lijun Zhang, Dejian Meng
Abstract Brake squeal shows a significant uncertainty characteristic. In this paper, a series of bench tests were carried out to study the uncertainty of brake squeal on a multi-function brake inertia dynamometer test bench. Then based on time-frequency analysis results, a creative squeal confirmation and determination method was presented, which can show the squeal variations in the domains of time, frequency and amplitude together. An uncertainty analysis method was also established, in which the statistical parameters of squeal frequency and sound pressure level (SPL), and probability density evaluation of frequency based on Quantile-Quantile Plot (QQ plot) were given. And a judgment method of the frequency doubling was devised based on numerical multiple and occurrence concurrence, as well as the uncertainty statistical analysis method considering frequency doubling. All the methods established were applied to the uncertainty analysis of brake squeal.
2014-04-01
Technical Paper
2014-01-0026
HakSon Han, ChulMin Park, JeongHoi Heo, Sang Kyu Kang
Abstract In order to achieve the proper automobile interior sound, the tailpipe noise of the exhaust system must be considered as a main contributor. This paper describes a study of the achievement of dynamic sound quality through exhaust system design. Firstly, we determined the vehicle's interior sound quality and established a target sound using a subjective assessment of 10 benchmark vehicles. The exhaust noise target is determined by means of transfer path analysis focusing on the noise source and how it's impacted by the muffler design. The exhaust system is commonly modeled as a combination of source strength and impedance. We obtained the source character by the wave decomposition method using two microphones and six loads ultimately leading to an optimized design of the inner muffler structure. Based on this study, we achieved dynamic interior sound and improved exhaust system performance.
2014-04-01
Technical Paper
2014-01-0020
Hangsheng Hou
Abstract The purpose of this work is to analytically investigate automotive exhaust system noise generation and propagation phenomena. The turbulent exhaust gas flow interacts with the exhaust system structure, and as a result of this interaction, the structure vibrates and radiates noise. In the meantime, pressure wave becomes acoustic wave at its outlet. This study focuses on an exhaust system and carrying out transient fluid-structure analysis by using an explicit finite element solver that is capable of solving the Navier Stokes equations for turbulent, compressible viscous fluids as well as the field equations for solid structures in a fully coupled fashion. The time domain signals obtained from the transient analysis are post-processed to yield frequency domain data, sound pressure levels, noise source pattern as well as the selected acoustic field contour snapshots.
2014-04-01
Technical Paper
2014-01-0022
Youichi Kamiyama
Abstract Tire cavity noise has long been one of the main road noise issues. Various ideas for devices to reduce tire cavity noise have been patented or discussed in technical reports, but many issues remain for commercialization, and at present only some tires have appeared as products. Therefore, technology was developed for mounting Helmholtz resonators on the wheels, enabling reduction of tire cavity noise without placing restrictions on the tires. The advantage of this technology is that the cost and productivity targets needed for mass production can be satisfied without impairing the tire and wheel functions. The aim of this development was to construct low-cost device technology that is well-suited to mass production and enables reduction of tire cavity noise to an inaudible sound pressure without adversely affecting dynamic product marketability such as strength and durability performance and handling performance.
2014-04-01
Technical Paper
2014-01-1040
Gihwan Kim, Chi-Hoon Choi, You Sung Moon, Yong Sun (Steven) Jin
Abstract The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
2014-04-01
Technical Paper
2014-01-1680
Sandeep Mahadev Jadhav
Abstract Objective of this research is to reduce gear rattle and whine noise. Study includes measurement of noise, vibration on transmission for source identification in order to eliminate rattle, whine through optimization of gear design and clutch damper performance. In order to optimize, we measured transmission torsional vibration and analyzed for proper selection of clutch dampers to reduce engine vibration transfer function to transmission. Through Noise & Vibration FFT, order and color map analysis we identified noise sources and further scope for specific gears design improvement. Hence test methodology adopted for development of gears and clutch damper successfully eliminated noise.
2014-04-01
Technical Paper
2014-01-1364
Ornella Chiavola, Giancarlo Chiatti, Erasmo Recco
Abstract Many studies have demonstrated that an efficient control of the combustion process is crucial in order to comply with increasingly emerging Diesel emission standards and demanding for reduced fuel consumption. Methodologies based on real-time techniques are imperative and even if newly sensors will be available in the near future for on-board installation inside the cylinder, non intrusive measurements are still considered very attractive. This paper presents an experimental activity devoted to analyze the noise emission from a small displacement two-cylinder Diesel engine equipped by HPCR (high pressure common rail) fuel injection system. The signals acquired during stationary operation of the engine are analyzed and processed in order to highlight the different sources contributing to the overall emission. Particular attention is devoted to the specific samples of the signal that are mainly caused by the combustion process in order to extract the combustion contribution.
Viewing 241 to 270 of 8727

Filter

Subtopics