Display:

Results

Viewing 241 to 270 of 9407
2016-04-05
Journal Article
2016-01-0101
Carl Arft, Yin-Chen Lu, Jehangir Parvereshi
Abstract Oscillators are key components in automotive electronics systems. For example, a typical automotive camera module may have three or more oscillators, providing the clocks for microcontrollers, Ethernet controllers, and video chipsets. These oscillators have historically been built around a quartz crystal resonator connected to an analog sustaining circuit driving the crystal to vibrate at its resonant frequency. However, quartz-based devices suffer from poor performance and reliability in harsh automotive environments. SiTime has developed timing solutions based on silicon micro-electromechanical systems (MEMS) technology that exhibit better electromagnetic noise rejection and better performance under shock and vibration. In this paper, we first discuss the design and manufacturing of the MEMS-based device, with emphasis on the specific design aspects that improve reliability and resilience in harsh automotive environments.
2016-04-05
Journal Article
2016-01-0459
Jian Zhao, Jing Su, Bing Zhu, Jingwei Shan
Abstract Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
2016-04-05
Journal Article
2016-01-1122
Hyungsouk Kang, TaeYoung Chung, Hyeongcheol Lee, Hyungbin Ihm
Abstract Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
2016-04-05
Journal Article
2016-01-1298
Shukai Yang, Zuokui Sun, Yingjie Liu, Bingwu Lu, Tao Liu, Hangsheng Hou
Abstract This work carries out complex modal analyses and optimizations to resolve an 1800 Hz front brake squeal issue encountered in a vehicle program development phase. The stability theory of complex modes for brake squeal simulation is briefly explained. A brake system finite element model is constructed, and the model is validated by the measurement in accordance with the SAE 2521 procedure. The key parameters for evaluating the stability of the brake system complex modes are determined. The modal contributions of relevant components to unstable modes are analyzed and ranked. Finally, in order to resolve the squeal issue, the design improvements of rotor, caliper and pad are proposed and numerical simulations are carried out. The obtained results demonstrate that the optimized rotor and pad design can alleviate the squeal issue significantly while the optimized clipper design could essentially eliminate the squeal issue.
2016-04-05
Journal Article
2016-01-0477
Pu Gao, Yongchang Du, Yujian Wang, Yingping Lv
Abstract The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
2016-04-05
Journal Article
2016-01-0476
Yongchang Du, Yingping Lv, Yujian Wang, Pu Gao
Abstract Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
2016-04-05
Journal Article
2016-01-1310
Yitian Zhang, David W. Herrin, T. Wu, Xin Hua
Abstract Prior research on assessing multiple inlet and outlet mufflers is limited, and only recently have researchers begun to consider suitable metrics for multiple inlet and outlet mufflers. In this paper, transmission loss and insertion loss are defined for multiple inlet and outlet mufflers using a superposition method that can be extended to any m-inlet n-outlet muffler. Transmission loss is determined assuming that the sources and terminations are anechoic. On the other hand, insertion loss considers reflections. For both metrics, the amplitude and phase relationship between the sources should be known a priori. This paper explains both metrics, and measurement of transmission and insertion loss are demonstrated for a 2-inlet 2-outlet muffler with good agreement.
2016-04-05
Journal Article
2016-01-1299
Robert S. Ballinger
Abstract The complex eigenvalue analysis has been used by the brake research community to study friction-induced squeal in automotive disk brake assemblies. The analysis process uses a nonlinear static pre-stressed normal modes analysis simulation sequence followed by a complex eigenvalue extraction algorithm to determine the dynamic instabilities. When brake hardware exists, good correlation between analysis results and experimental data can be obtained. Consequently, complex eigenvalue analysis can be a valuable method in an effort to understand brake components that might have a propensity to influence the noise behavior of a brake system. However, when hardware does not exist and the complex eigenvalue method is asked to be predictive, it becomes a difficult, if not impossible task. This paper will focus on some of the reasons the complex eigenvalue analysis method is not a reliable predictor of friction-induced squeal in automotive disk brake assemblies.
2016-04-05
Journal Article
2016-01-1303
Haiqing Xu, Chang Jin, Hong Zhou, Yi Zhou
Abstract On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
2016-04-05
Journal Article
2016-01-1316
Vincent Rovedatti, Jacob Milhorn, Richard DeJong, Gordon Ebbitt
Abstract A 1/4 scale model vehicle profile has been tested in a wind tunnel with speeds up to 360 km/h. In order to simulate the free field flow over the vehicle, the top surface of the wind tunnel is contoured. A CFD simulation of the free field flow at various speeds is used to identify the desired top streamline. Then the boundary layer growth on the top surface is calculated and the top contour is adjusted accordingly. Since this contour changes very little with flow speeds of interest, an average contour is used for a fixed top surface of the wind tunnel. Pressure drop measurements are used to verify the flow similarity to the CFD model. Wind noise measurements using surface mounted pressure transducer arrays are used to determine the acoustic loads on the vehicle surfaces.
2016-04-05
Journal Article
2016-01-1315
Yongchang Du, Yingping Lv, Yujian Wang, Pu Gao
Abstract Closed-loop coupling model, based on complex eigenvalue analysis, is one of the most popular and effective methods for brake squeal analysis. In the model, imaginary coupling springs are used to represent the normal contacting force between coupled nodes. Unfortunately, the physical meaning of these coupling springs was seldom discussed and there’s no systematic method to determine the value of spring stiffness. Realizing this problem, this paper, based on finite element model and modal synthesis technique, develops a new closed-loop coupling disc brake squeal model without introducing imaginary coupling springs. Different from the traditional model where two nodes at coupling interface are connected through a spring, these node-pairs in the new model are assumed to remain in tight contact during vibration. Details of the model, including force analysis, coordinate reduction and transformation and complex eigenvalue decomposition are given in this paper.
2016-04-05
Journal Article
2016-01-1375
Masahiro Ueda, Satoshi Ito, Daichi Suzuki
Abstract Ride quality is an important purchasing consideration for consumers. It is typically defined in terms of noise, vibration and harshness. These phenomena are a result of vibrations caused at the engine/powertrain and from the road surface, which are transmitted to the passenger cabin. To minimize such vibrations, rubber parts are used extensively at mounting points for the cabin, such as engine mountings and suspension bushings. The vehicle development process increasingly requires performance testing, including rubber parts using CAE, prior to prototype evaluation. This in turn requires a rubber material model that can accurately describe dynamic characteristics of rubber components, particularly frequency and amplitude dependency.
2016-04-05
Journal Article
2016-01-1543
Donald F. Tandy, Scott Hanba, Robert Pascarella
Abstract One important part of the vehicle design process is suspension design and tuning. This is typically performed by design engineers, experienced expert evaluators, and assistance from vehicle dynamics engineers and their computer simulation tools. Automotive suspensions have two primary functions: passenger and cargo isolation and vehicle control. Suspension design, kinematics, compliance, and damping, play a key role in those primary functions and impact a vehicles ride, handling, steering, and braking dynamics. The development and tuning of a vehicle kinematics, compliance, and damping characteristic is done by expert evaluators who perform a variety of on road evaluations under different loading configurations and on a variety of road surfaces. This “tuning” is done with a focus on meeting certain target characteristics for ride, handling, and steering One part of this process is the development and tuning of the damping characteristics of the shock absorbers.
2016-04-05
Journal Article
2016-01-1595
Haibo Wu, Jiangbin Zhou, Qian Chen, Gongwen Liu, Chaoqun Qian
Abstract In this paper we present the work which was done at Shanghai-VW for using computational aero-acoustic (CAA) simulation in the vehicle development process to assess and improve the buffeting behavior of a vehicle when the rear side window is open. In the first step, a methodology was established and validated against wind tunnel tests using a Sedan. The methodology consists of a calibration of the CAA model to represent the properties of the cabin interior of the real car in terms of damping, wall compliance and leakage followed by CAA simulations of the full vehicle at different wind speeds to obtain the transient flow field around the exterior shape and inside the passenger compartment. The interior noise spectra are directly calculated from the transient pressure inside the cabin.
2016-04-05
Journal Article
2016-01-0639
Brian C. Kaul, Benjamin Lawler, Akram Zahdeh
Abstract Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
2016-04-05
Journal Article
2016-01-0731
Gen Shibata, Daisuke Nakayama, Yuki Okamoto, Hideyuki Ogawa
Abstract Reductions in combustion noise are necessary in high load diesel engine operation and multiple fuel injections can achieve this with the resulting reductions in the maximum rate of pressure rise. In 2014, Dr. Fuyuto reported the phenomenon that the combustion noise produced in the first combustion can be reduced by the combustion noise of the second fuel injection, and this has been named “Noise Cancelling Spike Combustion (NCS combustion)”. To investigate more details of NCS combustion, the effects of timings and heating values of the first and second heat releases on the reduction of overall combustion noise are investigated in this paper. The engine employed in the research here is a supercharged, single cylinder DI diesel engine with a high pressure common rail fuel injection system.
2016-04-05
Journal Article
2016-01-0774
Martin Wissink, Rolf Reitz
Abstract Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NOx and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS).
2016-04-05
Technical Paper
2016-01-1063
George Nerubenko
Abstract Up to 30% of engine noise is delivered by front end pulley combined with torsional vibration damper, and technically it is the main contributor to recorded engine noise level. So the novel solutions in terms of improving the design and performance of torsional vibration damper would help to reduce radically this component of engine noise. The results of dynamical study of patented torsional vibration damper combined with pulley are presented. Design and structure of torsional vibration damper is based on author’s US Patent 7,438,165 having the self-tuning control system for all frequencies in running engine in all operational regimes. Mathematical model has been used for the analysis of the emitting noise of engine having proposed torsional vibration damper. Attention is paid to mitigation of the sound power levels contributing by engine subsystem “end of crankshaft - torsional vibration damper - pulley”.
2016-04-01
WIP Standard
J1192
This standard established the requirements and test procedures for the operational life, corrosion resistence, and sound pressure level of motorcycle electric and electro pnuematic audible warning deveices. Test equipment, environment, and procedures are specified.
2016-03-31
Article
Ford's 6.7-L diesel V8 has yet to obtain certified power ratings, but it's expected to exceed 900 lbft of torque, necessitating an upgrade of the company's dyno sleds to enable SAE J2807 vehicle tow testing.
2016-03-27
Article
Self-driving car project CEO John Krafcik discussed Google's work underway toward fully autonomous vehicles, at a recent NY forum. First likely market: the elderly and impaired.
2016-03-25
WIP Standard
AIR5661A
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
2016-03-25
WIP Standard
AS8017D
This SAE Aerospace Standard (AS) establishes minimum performance standards for new equipment anticollision light systems.
2016-03-24
Article
In this Q&A, Toyota Technical Center President Seiya Nakao discusses future mobility development, technical innovation, Toyota's recent reorganization, and the ever-changing automotive engineering profession.
2016-03-14
Article
As airlines strive to move more and more people faster and faster, the talk of a future supersonic aircraft for commercial purposes is getting louder and louder.
2016-03-14
Journal Article
2016-01-9108
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
Abstract Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
2016-03-07
Article
The POSIWIRE sensor WS21 from ASM Sensors is designed for measuring ranges up to 20,000 mm.
2016-03-06
Article
Cambustion’s DPG, an automated particle filter testing system, can be used to load diesel particulate filters (DPFs) and now gasoline particulate filters (GPFs) with ash over a matter of hours, the company claims. This is a new application of the DPG for studying the effects of ash build-up in particulate filters.
2016-03-04
Article
A solution from Spirent Communications will help reduce the development time and cost of automotive Ethernet/BroadR-Reach systems.
2016-03-03
Magazine
Multi-material structures move mpg upward The quest to improve fuel economy is not waning, nor is the desire to achieve higher mpg through the use of just the right lightweight material for the right vehicle application. Cars poised to become 'a thing' Making automobiles part of the Internet of Things brings both risks and rewards. Agility training for cars Chassis component suppliers refine vehicle dynamics at the high end and entry level with four-wheel steering and adaptive damping. SAE 2016 World Congress Preview Technology trends and exhibitor products are highlighted in this special section, which features Toyota's plans for the show floor, tech sessions, and more.
Viewing 241 to 270 of 9407

Filter

Subtopics